Evaluation of the Toupin-Mindlin Theory for Predicting the Size Effects in the Buckling of the Carbon Nanotubes

Veturia Chiroiu¹, Ligia Munteanu¹ and Pier Paolo Delsanto²

Abstract: Conventional continuum theories are unable to capture the observed indentation size effects, due to the lack of intrinsic length scales that represent the measures of nanostructure in the constitutive relations. In order to overcome this deficiency, the Toupin-Mindlin strain gradient theory of nanoindentation is formulated in this paper and the size dependence of the hardness with respect to the depth and the radius of the indenter for multiple walled carbon nanotubes is investigated. Results show a peculiar size influence on the hardness, which is explained via the shear resistance between the neighboring walls during the buckling of the multi-walled nanotubes.

Keywords: Toupin-Mindlin strain gradient theory, nanoindentation, size effects, buckling, carbon nanotubes.

1 Introduction

Nanoindentation is a testing method which received considerable recent interest in the mechanical characterization of materials [Tabor (1951); Johnson (1985); Oliver and Pharr (1992); Collin et al. (2008); Dumitriu and Chiroiu (2006, 2008); Dumitriu et al. (2008); Misra and Huang (2009; Keerthika et al. (2009)]. The goal of such testing is to extract elastic modulus and hardness of the specimen material from readings of indenter load and depth of penetration [Qian et al. (2008)]. The forces involved are usually of the order of mN (1mN = 10⁻³N) range and are measured with a resolution of the order of nN (1nN =10⁻⁹N). The depths of penetration are of the order of microns with a resolution of less than a nanometre (10⁻⁹N).

The size dependence of the nanoindentation is an open problem. There are numerous indentation tests at scales on the order of a micron or a submicron which have shown that the hardness increases significantly with decreasing the indenter

¹ Institute of Solid Mechanics of Romanian Academy, Ctin Mille 15, 010141 Bucharest
² Politecnico of Torino, Physics Department, Corso Duca degli Abruzzi 24, 10129 Torino
size [Abu (2007)]. This can be attributed to the evolution of the so-called geometrically necessary dislocations beneath the indenter, which gives rise to strain gradients. On the micron or nanometer scale, the size effect of the deformation is inherent [Hutchinson (2000); Evans and Hutchinson 2009]. Similarly indentation on the nano/microscale also displays a strong size effect. For example, the spreading of intershell distances and the inlayer van der Waals interactions in carbon nanotubes depend on the size of the tube [Brenner et al. (2002); Srivastava and Atluri (2002); Nair et al. (2008); Cheng et al. (2009)]. We add the dependency on the size of the tube of the dispersive characteristics, group velocities of multiwalled carbon nanotubes [Xie et al. (2007)]. The mechanical properties are size dependent with respect to different dimensions and geometries of the carbon nanotubes [Theodosiou and Saravanos (2007); Chen et al. (2007); Solano et al. (2008); Chiroiu et al. (2006); Munteanu and Chiroiu (2009); Jeng et al. (2009); Giannopoulos et al. (2010)]. The indentation hardness of metals and ceramics increases with respect to decreasing the indenter size below 10 micron-size indents [Ma and Clarke (1995); Poole et al. (1996); Begley and Hutchinson (1998)].

The necessity for higher-order continuum theories originates from the inability of the classical theories to account for observed the size effects on the micro and nanoscales [Toupin (1962); Mindlin (1964)]. These effects usually manifest themselves as an increase in the strength with respect to decreasing the size of the structure when the length scale is of the order of microns.

Principal methods of the theoretic study on carbon nanotubes are atomistic simulation, continuum model and multi-scale simulation methods. Atomistic techniques are defective for simulation of phenomena occurring on a vast range of length scales. So far, a few continuum mechanics methods have been adopted for studying the carbon nanotubes [Ru (2001); Li and Chou (2003); Nasdala et al. (2005)]. Multi-scale simulation methods in nanomechanics are used by Gumbsch (1996); Hiroshi Kadowaki and Wing Kam Liu (2005) and Shen and Atluri (2004). The results obtained by Xie and Long (2006) show that micropolar theory which takes into account the microdeformation, can also be employed to analyze the mechanics behaviors of nanostructure. The micropolar mechanics demand the fewer elements than the molecular structural mechanics, and its computational time is shorter than the molecular structural mechanics. Computational homogenisation can be also used to couple two different continuum at macro scale, classical and gradient [Kaczmarczyk (2006)].

The necessity for higher-order continuum theories originates from the inability of the classical theories to account for observed the size effects on the micro and nanoscales [Toupin (1962); Mindlin (1964)]. These effects usually manifest themselves as an increase in the strength with respect to decreasing the size of the struc-
The lack of intrinsic length scales that represent the measures of microstructure in their constitutive relations in conventional continuum theories is very well known [Kikuchi et al. (1985); Fleck and Hutchinson (1993, 1997, 2001); Chambon et al. (1996, 1998, 2001, 2004); Georgiadis et al. (2000); Kaczmarczyk (2005); Georgiadis and Grentzelou (2006); Zhao et al., 2005, 2006, 2007a,b; Zhao and Sheng (2006)]. The importance of a potential function relies on simplification of the quantum mechanics and ab initio complexity. These simplifications are very important once it can provide analytical solutions of materials properties [Chakrabarty and Cagin (2008); Rino et al (2009)]. The multiscale nonlinear tensorial constitutive modeling of carbon nanostructures is based on the interatomic potentials. Using a constitutive model written as a tensorial equation relating the second Piola-Kirchhoff stress tensor to Green-Lagrange strain tensor, the elastic behavior of the graphene sheet and carbon nanotube are studied by Ghanbari and Naghdabadi (2009).

Some new and recent results for 3D solid mechanics problems involving the strain-gradient theories of material inelasticity are obtained by Tang, Shen and Atluri (2003). The novel use of the Meshless Local Petrov Galerkin Method (MLPG) is generating a variety of meshless methods and algorithms for molecular dynamics, and for multiple-length&-time scale simulations [Atluri and Zhu (1998); Atluri and Shen (2002 a,b); Han and Atluri (2003); Atluri, Han and Shen (2003): Li et al. (2003)].

In parallel with Mindlin’s (1965) second-order strain gradient theory (or grade-three elasticity), the Toupin-Mindlin theory which is sometimes also called the first strain gradient theory in elasticity or the linear theory of solids of grade two [Toupin (1964); Mindlin and Eshel (1968); Eshel and Rosenfeld (1970, 1975)], where the term grade indicates the order of the space gradients operating on the displacement. The original Toupin–Mindlin strain gradient theory has been formulated in general tensor forms. The general formulations of this theory for the cases of cylindrical coordinates and spherical coordinates are derived by Zhao and Pedroso in 2008, following the approach and notation used by Eringen (1967) for the translation of conventional elasticity theories from rectangular coordinates to orthogonal curvilinear coordinates.

In the viscoelasticity range, a strain-gradient theory for isotropic viscoplastic materials was also proposed [Lele and Anand (2009)]. Lele and Anand have applied their gradient viscoplasticity theory to simulate the size-effect regarding hardness versus the indentation depth in nano/micro-indentation experiments.

Very few experimental results exist for the shell buckling of nanotubes. A remark-
able work in this direction is due to Waters et al. (2005). They measured the critical shell-buckling load by an experimental technique in which individual multiwalled carbon nanotubes are axially compressed using a nanoindenter.

The objective of this paper is to investigate the size dependence of the hardness with respect to the depth and the indenter radius for the shell buckling of multiwalled carbon nanotubes. The Toupin-Mindlin strain gradient theory is used to explain the size influence on the hardness, by taking account on the higher-order stress gradient contribution in the shear resistance of the neighboring walls during buckling of the multiwalled nanotubes.

2 Toupin-Mindlin strain gradient theory of nanoindentation

The indentation test consists of measuring simultaneously the indentation load P and indentation depth h during the normal penetration of an indenter into a sample of volume V and surface S. The scheme of the indentation with a flat-ended cylindrical punch, a conical indenter with the apex angle 2α, and a spherical indenter with a diameter $2R$ are shown in Figs. 1(a)-(c), respectively. The in-plane dimensions and the thickness of the indented material, normal to the indented surface, are much larger than the diameter $2a$ of the largest imprint made on it by the indenter. In the rectangular coordinate system, the in-plane is denoted by (x, y) and the radial direction is denoted by r, while the out-of-plane direction is denoted by z. At the indented surface we have $z = 0$. The process modeled here represents quasi-static, frictionless, normal indentation of a transversely isotropic material by an axisymmetric rigid indenter.

The hardness H is given by the following relationship, where A is the contact area

$$H = \frac{P}{A} \quad (2.1)$$

Many studies have been elaborated in order to determine the contact area [Hernot et al. (2006); Li et al. (1997)]. Hill et al. (1989)] have introduced a factor C^2 to quantify the degree of piling-up ($C^2 > 1$) or sinking-in ($C^2 < 1$) during the indentation test. Li et al. (1997) suggested the determination of a relationship between the indentation load P and depth h in the elastic regime using the results deduced from the Hertz elastic

$$P = \frac{4}{3} \frac{E}{1 - \nu^2} h \sqrt{hR}, \quad (2.2)$$

where E is the Young’s modulus and ν is the Poisson ratio. In the Hertz theory, the contact radius a is \sqrt{Rh} and therefore Eq. (2.2) becomes

$$P = \frac{4}{3} \frac{Eah}{1 - \nu^2}. \quad (2.3)$$
The initial unloading stiffness for every kind of axisymmetric indenters, can be defined as follows [Galin (1946); Sneddon (1965); Bulychev et al. (1975, 1976); Shorshorov et al. (1981); Wolff (2001)]

Now, let us consider a gradient-dependent material body with volume V and surface S, which is normally indented by an axisymmetric indenter.

Let us consider the Toupin-Mindlin strain gradient theory in the rectangular coordinate system. We assume that the strain gradient tensor η_{ijk} and the double stress tensor τ_{ijk} with dimensions force per unit length, are present in the material body together with the conventional Eulerian strain tensor ε_{ij} and Cauchy stress tensor σ_{ij}. The components of the strain and strain gradient tensors are defined by

$$\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}), \quad \eta_{ijk} = \varepsilon_{jk,i} = u_{k,ij} = \eta_{ikj}, \quad i, j, k = 1, 2, 3,$$

where u_i, $i = 1, 2, 3$ are displacements. ε_{ij} and η_{ijk} are symmetric with respect to the indices i and j, and accordingly, the Cauchy stress tensor σ_{ij} and the double stress tensor τ_{ijk} are also symmetric with respect to i and j. Consequently, under any small perturbations of the strains and strain gradients, $\delta \varepsilon_{ij}$ and $\delta \eta_{ijk}$, the work deviation may be obtained by the two pairs of work-conjugates

$$\delta W = \sigma_{ij} \delta \varepsilon_{ij} + \tau_{ijk} \delta \eta_{ijk}.$$

In addition, within the framework of linear elasticity, the following generalized Hooke’s law between σ_{ij} and ε_{ij}, and τ_{ijk} and η_{ijk}, respectively, is assumed

$$\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij},$$
\[\tau_{ijk} = \xi_1 l^2 (\eta_{ipp} \delta_{jk} + \eta_{jpp} \delta_{ik}) + \xi_2 l^2 (\eta_{ppi} \delta_{jk} + 2\eta_{kpp} \delta_{ij} + \eta_{ppj} \delta_{ik}) + \xi_3 l^2 \eta_{ppk} \delta_{ij} + \xi_4 l^2 \eta_{jik} + \xi_5 l^2 (\eta_{kji} + \eta_{kij}), \] (2.5)

where \(\lambda \) and \(\mu \) are the conventional Lamé constants, \(\xi_i, i = 1, 2, \ldots, 5 \), are the elastic constants associated with the gradient terms, while \(l \) denotes an internal length scale resulted by the introduction of the strain gradients. It is related to the dimension of microstructure in the material. The positive definiteness of the strain energy density requires

\[\mu > 0, \quad 3\lambda + 2\mu > 0, \quad \xi_2 > 0, \quad 5\xi_1 + 2\xi_2 > 0, \]
\[-d_1 < d_2 < d_1, \quad 5f^2 < 6(d_1 - d_2)(5\xi_1 + 2\xi_2), \]
\[18d_1 = -2\xi_1 + 4\xi_2 + \xi_3 + 6\xi_4 - 3\xi_5, \]
\[18d_2 = 2\xi_1 - 4\xi_2 - \xi_3, \quad 3\xi_1 = 2(\xi_1 + \xi_2 + \xi_3), \]
\[\xi_2 = \xi_4 + \xi_5, \quad 3f = \xi_1 + 4\xi_2 - 2\xi_3. \]

In the absence of body and inertia forces, the equilibrium equations written in terms of Cauchy stress \(\sigma_{ij} \) and the higher-order stress \(\tau_{ijk} \) are

\[\sigma_{ik,i} - \tau_{ijk,j} = 0. \] (2.6)

Substituting Eqs. (2.4) and (2.5) into Eq. (2.6), the equilibrium equations can be written with respect to displacements

\[\lambda u_{p,pi} \delta_{ik} + \mu (u_{i,ki} + u_{k,ji}) - \xi_1 l^2 (u_{p,ipji} \delta_{jk} + u_{p,jppji} \delta_{ik}) - \xi_2 l^2 (u_{i,ppji} \delta_{jk} + 2u_{p,kppji} \delta_{ij} + u_{j,ppji} \delta_{ik}) - \xi_3 l^2 u_{k,ppji} \delta_{ij} - \xi_4 l^2 u_{k,iji} - \xi_5 l^2 (u_{i,kjji} + u_{j,kjji}) = 0, \] (2.7)

To write the boundary conditions, the external surface \(S \) may be divided into two parts: the surface boundary \(S_\sigma \) for static forces, and the surface boundary \(S_u \) for displacements. On \(S_\sigma \), the boundary conditions read as

\[T_k = n_i (\sigma_{ik} - \partial_j \tau_{ijk}), \quad R_k = n_i n_j \tau_{ijk}, \]

where \(T_k \) and \(R_k \) are the surface tractions and higher-order surface tractions, respectively. The above boundary conditions represent the conventional traction and higher-order traction conditions for a gradient-dependent material body. In the following we suppose that the contribution of \(\tau_{ijk} \) is zero. So, \(T_k \) and \(R_k \) become

\[T_k = n_i \sigma_{ik}, \quad R_k = 0. \] (2.8)
On S_d the boundary conditions are given by

$$u_k = \bar{u}_k, \quad n_l \partial_l u_k = \bar{e}_k,$$

(2.9)

where \bar{u}_k denotes the known displacements and \bar{e}_k represent the known normal gradient of \bar{u}_k. A rigorous derivation of the kinematic conditions in Eq.(2.9b) was given by Georgiadis and Grentzelou (2006) using the principle of complementary virtual work and a Hellinger–Reissner-type variational principle.

2.1 Spherical nanoindentation

In order to study the buckling of multiple walled carbon nanotubes, the spherical indentation is used. In conjunction with the strain gradient theory of nanoindentation, the spherical coordinate description is necessary. The in-plane radial direction is denoted by r, the in-plane angular position is denoted by θ, while the out-of-plane angular position is denoted by φ. The indenter is a rigid sphere of radius R as shown in Fig. 1c. The indenter is loaded with a normal force P, and the hardness H is given by Eq. (2.1).

Figure 2: Spherical coordinates

The spherical coordinates (r, θ, φ) are related to the rectangular coordinates (x, y, z) by (see also Fig. 2)

$$x = r \sin \theta \cos \varphi, \quad y = r \sin \theta \sin \varphi, \quad z = r \cos \theta.$$
In the absence of body forces, the gradient-dependent equilibrium equations (2.6), written in spherical coordinates are given by [Volokh (2006); Zhao and Pedroso (2008)]

\[
\begin{align*}
\sigma_{rrr}^* + \frac{1}{r} \sigma_{\theta r}^* + \frac{1}{r \sin \theta} \sigma_{\phi r, \phi}^* + \frac{1}{r} (2 \sigma_{rr}^* - \sigma_{\theta \theta}^* - \sigma_{\phi \phi}^* + \sigma_{\theta r}^* \cot \theta) &= 0, \\
\sigma_{r \theta r}^* + \frac{1}{r} \sigma_{\theta \theta, r}^* + \frac{1}{r \sin \theta} \sigma_{\phi \theta, \phi}^* + \frac{1}{r} (2 \sigma_{r \theta}^* + \sigma_{\theta \theta}^* + (\sigma_{\phi \theta}^* + \sigma_{\phi \phi}^*) \cot \theta) &= 0, \\
\sigma_{r \phi r}^* + \frac{1}{r} \sigma_{\phi \phi, r}^* + \frac{1}{r \sin \theta} \sigma_{\phi \phi, \phi}^* + \frac{1}{r} (2 \sigma_{r \phi}^* + \sigma_{r \phi}^* + 2 \sigma_{\phi \phi}^* \cot \theta) &= 0.
\end{align*}
\]

(2.10)

where \(\sigma_{ij}^* \) is the generalized stress components given by

\[
\sigma_{rr}^* = \sigma_{rr} - (\tau_{rrr,r} + r^{-1} \tau_{\theta r, rr} + r^{-1} \tau_{\phi r, \phi} \sin^{-1} \theta \\
+ r^{-1} (2 \tau_{rrr} - \tau_{\theta \theta r} - \tau_{\phi \phi r} - \tau_{\phi r r} + \tau_{r \theta r} \cot \theta)),
\]

\[
\sigma_{r \theta}^* = \sigma_{r \theta} - (\tau_{r \theta r, r} + r^{-1} \tau_{\theta \theta r, r} + r^{-1} \tau_{\phi \theta, \phi} \sin^{-1} \theta \\
+ r^{-1} (2 \tau_{r \theta r} + \tau_{r \theta r} - \tau_{\theta \theta \theta} - \tau_{\phi \phi r} - \tau_{r \phi r} + (\tau_{\theta \theta r} - \tau_{\phi \phi r}) \cot \theta)),
\]

\[
\sigma_{r \phi}^* = \sigma_{r \phi} - (\tau_{r \phi r, r} + r^{-1} \tau_{\phi \theta, \phi} \sin^{-1} \theta \\
+ r^{-1} (3 \tau_{r \phi r} - \tau_{\theta \phi r} - \tau_{\phi \phi r} + 2 \tau_{\phi \theta r} \cot \theta)),
\]

\[
\sigma_{\theta \theta}^* = \sigma_{\theta \theta} - (\tau_{\theta \theta, r} + r^{-1} \tau_{\theta \theta, r} + r^{-1} \tau_{\phi \theta, \phi} \sin^{-1} \theta \\
+ r^{-1} (3 \tau_{\theta \theta r} + \tau_{\phi r r} + (\tau_{\theta \theta r} - \tau_{\phi \phi r}) \cot \theta)),
\]

(2.11)

\[
\sigma_{r \theta}^* = \sigma_{r \theta} - (\tau_{r \theta r, r} + r^{-1} \tau_{\theta \theta r, \theta} + r^{-1} \tau_{\phi \theta, \phi} \sin^{-1} \theta \\
+ r^{-1} (2 \tau_{r \theta r} + \tau_{r \theta r} - \tau_{\phi \theta \theta} - \tau_{r \phi r} + (\tau_{r \theta r} - \tau_{\phi \phi r}) \cot \theta)),
\]

\[
\sigma_{\phi \theta}^* = \sigma_{\phi \theta} - (\tau_{\phi \theta r, r} + r^{-1} \tau_{\phi \theta \theta, \theta} + r^{-1} \tau_{\phi \phi r, \phi} \sin^{-1} \theta \\
+ r^{-1} (3 \tau_{\phi \theta r} + \tau_{\phi r r} + (\tau_{\phi \theta r} + \tau_{\phi \phi r} - \tau_{\phi \phi r}) \cot \theta)),
\]

\[
\sigma_{\phi \phi}^* = \sigma_{\phi \phi} - (\tau_{\phi \phi, r} + r^{-1} \tau_{\phi \phi, \phi} + r^{-1} \tau_{\phi \phi r, \phi} \sin^{-1} \theta \\
+ r^{-1} (3 \tau_{\phi \phi r} + \tau_{\phi r r} + (2 \tau_{\phi \phi r} + \tau_{\phi \phi r}) \cot \theta)),
\]
The physical components for strain gradients in spherical coordinates are given by

$$\sigma^*_{r\theta} = \sigma_{r\theta} - r^{-1}(\tau_{rr\theta}r + r^{-1}\tau_{r\theta\theta} + r^{-1}\tau_{r\theta\phi} \sin^{-1}\theta$$
$$+ r^{-1}(2\tau_{rr\theta} + \tau_{r\theta r} - \tau_{\theta\theta\theta} - \tau_{r\phi\phi} + (\tau_{\theta\theta\phi} + \tau_{r\phi r})\cot\theta)),$$

$$\sigma^*_{\theta\phi} = \sigma_{\theta\phi} - (\tau_{\theta\phi r}r + r^{-1}\tau_{\theta\phi\theta} + r^{-1}\tau_{\theta\phi\phi} \sin^{-1}\theta$$
$$+ r^{-1}(3\tau_{\theta\phi\theta} + \tau_{\theta r\phi} + (\tau_{\theta\phi\phi} - \tau_{\phi\phi\phi})\cot\theta))$$

The physical components for strains are given by

$$\varepsilon_{rr} = u_{r,rr}, \quad \varepsilon_{\theta\theta} = r^{-1}(u_{\theta,rr} + u_r), \quad \varepsilon_{\phi\phi} = r^{-1}(u_{\phi,\phi} \sin^{-1}\theta + u_r + u_{\phi} \cot\theta),$$

$$2\varepsilon_{r\phi} = 2\varepsilon_{\phi r} = r^{-1}(u_{r,\phi} \sin^{-1}\theta + u_{\phi, r} - u_{\phi}), \quad (2.12)$$

$$2\varepsilon_{\theta\phi} = 2\varepsilon_{\phi\theta} = r^{-1}(u_{\phi,\theta} + u_{\theta,\phi} \sin^{-1}\theta - u_{\phi} \cot\theta).$$

The physical components for strain gradients in spherical coordinates are given by

$$\eta_{rr} = u_{r,rr}, \quad \eta_{\theta\theta} = r^{-2}(u_{\theta,\theta,rr} + ru_{r,\theta} - 2u_{\theta,\theta} - u_r),$$

$$\eta_{\phi\phi} = r^{-2}u_{r,\phi,\phi} \sin^{-2}\theta + r^{-1}u_{r,rr}$$
$$+ r^{-2}u_{r,\theta} \cot\theta - 2r^{-2}u_{\phi,\phi} \sin^{-1}\theta - r^{-2}u_r - 2r^{-2}u_{\theta,\phi} \cot\theta),$$

$$\eta_{r\theta} = \eta_{\theta r} = r^{-1}(u_{r,r\phi} - r^{-1}u_{r,\theta} - u_{\theta, r} + 3r^{-1}u_{\theta}),$$

$$\eta_{r\phi r} = \eta_{r\phi r} = r^{-1}\sin^{-1}\theta(u_{r,r\phi} - r^{-1}u_{r,\phi} - u_{\phi, r} \sin\theta + 1.5r^{-1}u_{\phi} \sin^{-1}\theta),$$

$$\eta_{\phi\theta r} = \eta_{\theta\phi r} = r^{-2}\sin^{-1}\theta(u_{\theta,\theta,\phi} - u_{\theta,\phi} \cot\theta - u_{\theta, r} \sin\theta - u_{\phi, r} + 2u_{\phi} \cos\theta),$$

$$\eta_{rr\theta} = u_{\theta,rr} + r^{-2}u_{\theta}, \quad \eta_{\theta\theta\theta} = r^{-1}(r^{-1}u_{\theta,\theta,\theta} + 2r^{-1}u_{\theta, r} + u_{\theta, r} - r^{-1}u_{\theta}), \quad (2.13)$$

$$\eta_{\phi\phi\theta} = r^{-2}u_{\theta,\phi,\phi} \sin^{-2}\theta - r^{-2}u_{\phi,\phi} \cot\theta \sin^{-1}\theta$$
$$+ r^{-2}u_{\theta,\theta} \cot\theta - r^{-1}u_{\theta, r} - r^{-2}u_{\theta,\phi} \cot^2\theta),$$

$$\eta_{\theta\theta\theta} = \eta_{r\theta\theta} = r^{-1}(u_{r,\theta,\theta} + u_{r} - r^{-1}u_{\theta,\theta} - 0.5r^{-1}u_{r}),$$

$$\eta_{\phi\theta r} = r^{-1}\sin^{-1}\theta(u_{\theta, r\phi} - r^{-1}u_{\theta, r} - (u_{\phi, r} - 0.5r^{-1}u_{\phi}) \cos\theta),$$

$$\eta_{\phi\theta\theta} = \eta_{\theta\phi r} = r^{-2}\sin^{-1}\theta(u_{\theta,\theta,\phi} + u_{r,\phi}$$
$$- u_{\theta,\phi} \cot\theta - u_{\phi,\phi} \cos\theta + 0.5u_{\phi}(3 \cot\theta \cos\theta - \sin\theta),$$

$$\eta_{r\phi\phi} = u_{\phi,rr}, \quad \eta_{\phi\theta\phi} = r^{-1}(r^{-1}u_{\phi,\theta,\phi} + u_{\phi, r} + r^{-1}u_{\phi} \sin^{-2}\theta),$$
\[\eta_{\varphi \varphi} = r^{-1} \sin^{-1} \theta (r^{-1} u_{\varphi \varphi} \sin^{-1} \theta + 2r^{-1} u_{\varphi \varphi}) \\
\quad + 2r^{-1} u_{\vartheta \varphi} \cot \theta + u_{\varphi \varphi} \sin \theta + r^{-1} u_{\varphi \varphi} \cos \theta - r^{-1} u_{\varphi} \sin^{-1} \theta), \]
\[\eta_{\vartheta \varphi} = \eta_{\varphi \vartheta} = r^{-1} (u_{\varphi \vartheta} \sin^{-1} \theta - r^{-1} u_{\varphi \vartheta}), \]
\[\eta_{\varphi \vartheta} = \eta_{\vartheta \varphi} = r^{-1} (u_{\varphi \varphi} \sin^{-1} \theta \\
\quad - r^{-1} u_{\varphi \vartheta} \sin^{-1} \theta + u_{\varphi \vartheta} + (u_{\vartheta \varphi} - r^{-1} u_{\vartheta \varphi}) \cot \theta - 0.5 r^{-1} u_{\varphi}), \]
\[\eta_{\vartheta \vartheta} = \eta_{\varphi \vartheta} = r^{-2} (u_{\varphi \vartheta} \sin^{-1} \theta \\
\quad - u_{\varphi \vartheta} \sin^{-1} \theta \cot \theta + u_{\varphi \vartheta} + u_{\vartheta \varphi} \cot \theta - 0.5 u_{\vartheta} \sin^{-2} \theta). \]

The boundary conditions (2.8) and (2.9) become
\[T_r = n_p \sigma^*_{pr}, \quad T_{\vartheta} = n_p \sigma^*_{p\vartheta}, \quad T_{\varphi} = n_p \sigma^*_{p\varphi}, \quad \text{(2.14)} \]
on \(S_{\sigma} \), and
\[u_r = \bar{u}_r, \quad u_{\vartheta} = \bar{u}_{\vartheta}, \quad u_{\varphi} = \bar{u}_{\varphi}, \quad \text{(2.15)} \]
\[n_r u_{r,r} + n_{\vartheta} (u_{r,\vartheta} - u_{\vartheta}) + n_{\varphi} \sin \theta (u_{r,\varphi} - u_{\varphi} \sin \theta) = \bar{e}_r, \]
\[n_r u_{\vartheta,r} + n_{\vartheta} (u_{\vartheta,\vartheta} + u_r) + n_{\varphi} \sin \theta (u_{\vartheta,\varphi} - u_{\varphi} \cos \theta) = \bar{e}_{\vartheta}, \]
\[n_r u_{\varphi,r} + n_{\vartheta} u_{\varphi,\vartheta} + n_{\varphi} \sin \theta (u_{\varphi,\varphi} + u_r \sin \theta + u_{\vartheta} \cos \theta) = \bar{e}_{\varphi}, \]
on \(S_{u} \).

2.2 Nanoindentation simulation

The aim of this study is to simulate the nanoindentation test for multiple walled carbon nanotubes inspired from the papers of Munteanu and Chiroiu (2009) and Waters et al. (2005). Waters et al. (2005) have used a 10\(\mu \)m radius sphere indenting the nanotubes, with an extremely fine force and displacement resolution (\(\approx 300 \text{nm} \) and \(\approx 1 \text{nm} \), respectively).

In our paper we consider the axially compressed multiple walled carbon nanotube (MWCN) of diameter \(d = 50 \text{nm} \) and length \(L = 100 \text{nm} \), by a nanoindentation technique. The nanotubes used in our study have 15 walls with an interwall spacing of 0.34nm, the outer radius is \(R_{\text{outer}} = 25 \text{ nm} \), and the inner radius is \(R_{\text{inner}} = 20 \text{ nm} \).

In order to study the buckling of multiple walled carbon nanotubes, different radii of the spherical indenter are considered. The indenting surface is practically flat and all the nanotubes located near the center of the indent undergo shell buckling.
The contact area used in the calculation is very close to the cross-sectional area of the MWCN [Li and Chou 2003]

\[A = \pi \alpha \left[(R_{outer} - 0.17)^2 - (R_{inner} - 0.17)^2 \right] \] (2.16)

where \(0 \leq \alpha \leq 1 \) and the half layered thickness of the nanotube is 0.17. The scheme of the indentation of carbon nanotubes and shell buckling is presented in Fig.3.

![Figure 3: Scheme of the indentation and shell buckling](image)

The load-unloaded-displacement curve is presented in Fig.4. This curve was theoretically obtained by Munteanu and Chiroiu (2009), by applying a method that combines the features of nonlocal theory and molecular mechanics. The deformation of compressed multiple walled carbon nanotubes was investigated, with the emphasis on the simulation of the nanoindentation technique in order to compare the proposed method to available experimental results. The performance of the method was carefully verified by numerical experiments. The theoretical results obtained by Munteanu and Chiroiu (2009) were found to be in very good agreement with the experimental data reported by Waters, Gudury, Jouzi and Xu (2005).

In Fig. 4, as the experiments report, the loading portion consists of three stages: an initial linear increase, then a sudden drop in the slope with the curve becoming flat, and a third stage comprising and increasing load.

The sudden decrease in the slope is the signature CNT buckling, which indicates the collapse process.

After buckling, the neighbouring nanotubes come into contact with the indenter tip, which results in an increase in the load, as can be seen from Fig. 4 in the third stage. The position of the zero displacement corresponds to a nonzero load. According to
this simulation, the critical buckling is obtained as 2.18μN, which is very close to the experimental result (in the range 2.0-2.5μN).

3 General solutions for the boundary value problem

By substituting Eqs. (2.11), (2.12) and (2.13) into Eq. (2.10), the equilibrium equations can be written with respect to the displacements u_r, u_θ and u_ϕ. In the displacement form, the equilibrium equations (2.10) along with the boundary conditions (2.14) and (2.15) can be analytically solved by using the cnoidal method. The equilibrium equations written with respect to a new variable $\zeta = k_r r + k_\theta \theta + k_\phi \phi$, with the unknown wave numbers k_r, k_θ and k_ϕ can be reduced to the Weierstrass equations with polynomials of higher-order, similar to

$$u_i^2 = \sum_{j=0}^{n} A_j(\zeta)u^j.$$ \hspace{1cm} (3.1)

The cnoidal method was proposed by Munteanu and Donescu (2004) for solving nonlinear equations, as a further extension of the Osborne method (1995). The general solutions of the equilibrium equations can be written in the form [Munteanu and Chiroiu (2010)]

$$u_i = u_{i,\text{lin}} + u_{i,\text{nonlin}}, \quad i = r, \theta, \phi,$$ \hspace{1cm} (3.2)

where the linear and nonlinear terms express the linear and nonlinear superposition
respectively, of cnoidal functions

\[u_{\text{lin}} = 2 \sum_{k=0}^{n} \alpha_k \text{cn}^2(\omega_k \zeta; m_k), \]

\[u_{\text{nonlin}} = \frac{\sum_{k=0}^{n} \beta_k \text{cn}^2(\omega_k \zeta; m_k)}{1 + \sum_{k=0}^{n} \gamma_k \text{cn}^2(\omega_k \zeta; m_k)}. \tag{3.3} \]

In Eq. (3.3), the unknown cnoidal moduli verify the condition \(0 \leq m_k \leq 1\), while the unknown quantities \(\omega_k, \alpha_k, \beta_k\) and \(\gamma_k\) depend on \(\lambda, \mu, \xi\) and \(l\) and also on the boundary conditions (2.14) and (2.15). The theta-function representation of the solutions is used for deriving Eq. (3.3) [Data and Tanaka (1976); Dubrovin, Matseev and Novikov (1976)]. The derivation is a complicated affair drawing on many beautiful results in the theory of Hill’s equation and Riemann’s solution of the Jacob’s inversion problem. Let us introduce the following dependent-variable transformation

\[u = 2 \frac{d^2}{d\zeta^2} \log \Theta_n(\zeta). \tag{3.4} \]

Introducing Eq. (3.4) into Eq. (3.1), the following bilinear differential equation is obtained

\[D_\zeta^2 (1 + D_\zeta^2) \Theta_n \cdot \Theta_n = 0, \tag{3.5} \]

where the operator \(D_\zeta\) is defined as \(D_\zeta^m a \cdot b = (\partial_\zeta - \partial_\zeta')^m a(\zeta) b(\zeta')|_{\zeta=\zeta'}\). The function \(\Theta_n\) is given in terms of an asymptotic expansion of the following type (near-identity)

\[\Theta_n = 1 + \varepsilon \Theta_n^{(1)} + \varepsilon^2 \Theta_n^{(2)} + \ldots, \tag{3.6} \]

with \(\Theta_n^{(1)} = \sum_{i=1}^{n} \exp(i \omega_i \zeta)\). For \(n = 1\) one obtains

\[\Theta_1 = 1 + \exp(i \omega_1 \zeta + B_{11}), \]

\[\Theta_2 = 1 + \exp(i \omega_1 \zeta + B_{11}) + \exp(i \omega_2 \zeta + B_{22}) + \exp(\omega_1 + \omega_2 + B_{12}), \]

\[\Theta_3 = 1 + \exp(i \omega_1 \zeta + B_{11}) + \exp(i \omega_2 \zeta + B_{22}) + \exp(i \omega_3 \zeta + B_{33}) \]
\[+ \exp(\omega_1 + \omega_2 + B_{12}) + \exp(\omega_1 + \omega_3 + B_{13}) + \exp(\omega_2 + \omega_3 + B_{23}) + \exp(\omega_1 + \omega_2 + \omega_3 + B_{12} + B_{13} + B_{23}). \]
For an arbitrary \(n \), the following expression is obtained

\[
\Theta_n = \sum_{M=0,1} \exp \left(i \sum_{i=1}^{n} M_i \omega_i \zeta + \frac{1}{2} \sum_{i<j}^{n} B_{ij} M_i M_j \right),
\]

(3.7)

where \(\exp B_{ij} = \left(\frac{\omega_i - \omega_j}{\omega_i + \omega_j} \right)^2 \), \(\exp B_{ii} = \omega_i^2 \). In Eq. (3.7) \(M = [M_1, M_2] \) is the vector of integer indices (0 and 1), \(\omega = [\omega_1, \omega_2, ..., \omega_n] \) is the frequency vector, and \(\zeta \) is the finite number of degrees of freedom for a particular solution. The matrix \(B \) is written as a sum of a diagonal matrix and an off-diagonal matrix. The solution (3.4) can be written in the form

\[
u = 2 d^2 \frac{d^2}{d \zeta^2} \log \Theta_n(\zeta) = 2 \frac{d^2}{d \zeta^2} \log G(\zeta) + 2 \frac{d^2}{d \zeta^2} \log \left(1 + \frac{F(\zeta)}{G(\zeta)} \right),
\]

\[
G(t) = \sum_{M} \exp \left(i M \omega t + \frac{1}{2} M^T D M \right),
\]

\[
F(\zeta) = \sum_{M} (\exp M^T OM - 1) \exp \left(i M \omega \zeta + \frac{1}{2} M^T D M \right).
\]

Consider now the linear part of the solution only. The function \(G(\zeta) \) can be written in the product form \(G(\zeta) = \prod_{k=1}^{n} G_k(\zeta) \), where is the classical theta function given by the series [Magnus et al. (1966)]

\[
G_k(\zeta) = \sum_{M_k=\infty}^{\infty} \exp \left(i M_k \omega_k \zeta + \frac{1}{2} M_k^2 D_{kk} \right).
\]

Consequently, we obtain for the linear part of the solution

\[
u_{\text{lin}} = \sum_{k=0}^{n} \nu_{\text{lin},k}, \quad \nu_{\text{lin},k} = 2 \frac{d^2}{d \zeta^2} \log G_k(\zeta),
\]

(3.8)

\[
u_{\text{lin}} = \sum_{l=1}^{\infty} \alpha_l \left[\frac{2 \pi}{K_l \sqrt{m_l}} \sum_{k=0}^{\infty} \left(\frac{q_l^{k+1/2}}{1 + q_l^{2k+1}} \cos \left(2k + 1 \right) \frac{\pi \omega_l \zeta}{2K_l} \right)^2 \right],
\]

where we recognize the linear expression (3.2) [Abramowitz and Stegun (1984)] with \(K'(m_1) = K(m), m + m_1 = 1, K = K(m) + \int_{0}^{\pi/2} \frac{du}{\sqrt{1 - m \sin^2 u}}. \)
The nonlinear term of the solution can be written in the form

\[
2 \frac{d^2}{d\zeta^2} \log \left(1 + \frac{F(\zeta)}{G(\zeta)} \right) \equiv \sum_{k=0}^{n} \beta_k \sin^2(\omega_k \zeta; m_k) + \sum_{k=0}^{n} \gamma_k \sin^2(\omega_k \zeta; m_k),
\]

with \(0 \leq m_k \leq 1\). For \(m_k = 0\) and \(m_k = 1\), Eq. (3.9) is satisfied. A numerical verification of Eq. (3.9) was performed for different values of with a maximum error of \(5 \times 10^{-7}\).

4 Results for the spherical nanoindentation

Recent studies [Ouyang et al. (2008)] have shown that for a spherical indentation in a homogeneous material, the indentation size effect depends on the indenter radius rather than penetration depth. In order to investigate these effects, we carried out analyses of indentation with indenters of different radii, as well as different penetration depth.

The comparison of our simulations against experiments is not the focus of the present paper. Our intention is to explain via Toupin-Mindlin theory the well-known size effect regarding hardness versus depth and hardness versus indenter radius in nanoindentation experiments. Therefore, we will discuss the results with experimental results if available or earlier similar results obtained by theories different from that presented here.

Let us consider the following values of the material parameters \(\lambda = 1.42\text{TPa}, \mu = 2.31\text{TPa}, \xi_1 = 0.5\text{TPa} \cdot \text{m}^{-2}, \xi_j = 0.1\text{TPa} \cdot \text{m}^{-2}, j = 2, \ldots, 5\).

We consider three values for \(l = 0.5, 1, 1.5\mu\text{m},\) and \(l/R = 0.1, 0.04, 0.008\), where \(l\) denotes an internal length scale which appears in Eq. (2.7). These cases correspond to the indenter radii \(R = 5, 10, 15\mu\text{m}, R = 12.5, 25, 37.5\mu\text{m},\) and \(R = 62.5, 125, 187.5\mu\text{m},\) respectively.

Fig.3 presents the dimensionless hardness \((\tilde{H} = H/H_0)\) with \(H_0 = 1\text{TPa},\) versus the dimensionless indentation depth \((\tilde{h} = h/h_0)\) with \(h_0 = 1\text{nm},\) for \(l/R = 0.1\). The baseline corresponds to no gradient effects. The hardness \(\tilde{H}\) increases up to \(\tilde{h} = 8\) (corresponding to \(P = 2.18\mu\text{m}\)) and after that we observe a falling hardness with respect to increasing indentation depth \((\tilde{h} > 8)\), above the baseline case with no gradient effects. The effect is weaker for smaller indenter radii.

The profile of the curve presented in Fig.3 is similar to those obtained by Lele and Anand in 2009, by applying a theory of strain-gradient viscoplasticity with finite deformations for isotropic materials. Another model with a similar profile of the curve is based on a micromechanical model that assesses a nonlinear cou-
pling between the statistically stored dislocations and the geometrically necessary dislocations [Abu Al-Rub 2007].

While our theory of nanoindentation remains in the elastic range, the aforementioned theories’ attempt is to capture the micro and nano-indentation size effect via the dependency on plastic strain gradients.

Plots of the ratios of the hardness H and the generalized stress components σ_{rr}^*, $\sigma_{r\varphi}^*$, and $\sigma_{r\theta}^*$, respectively as functions of a/R and $l/R =0.1$, 0.04 and 0.008, are presented in Fig.4. Similarly, the plots of ratios of the hardness H and the generalized stress components $\sigma_{\theta\theta}^*$ and $\sigma_{\varphi\varphi}^*$, respectively as functions of a/R and $l/R =0.1$, 0.04 and 0.008, are presented in Fig.5.

Fig. 6 presents the dimensionless hardness \bar{H} with $H_0 =1TPa$, versus the dimensionless indentation depth ($\bar{h} = h/h_0$) with $h_0 =1nm$, for $l/R =0.008$. The baseline corresponds to no gradient effects. The hardness \bar{H} gradually slows up for $\bar{h} \leq 8$ and rapidly increases with respect to increasing $8 < \bar{h} < 30$. For $\bar{h} >30$, the increase in \bar{H} becomes less sensitive to \bar{h}. This type of behavior is similar to those obtained by Ouyang et al. (2008).

The Toupin-Mindlin theory is evaluated in order to predict and explain this peculiar behavior. The decrease or increase in \bar{H} is believed to be closely associated with the loading P and the inner walls size in multiwalled nanotubes.
Figure 6: Ratios between the hardness H and σ_{rr}^\ast, $\sigma_{r\varphi}^\ast$ and $\sigma_{r\theta}^\ast$ as functions of a/R.

Figure 7: Ratios between the hardness H and $\sigma_{\theta\theta}^\ast$ and $\sigma_{\varphi\varphi}^\ast$ as functions of a/R.
When the dimensions of the indenter radius are comparable to the intershell walls size (fig.3), the indenter motion is easier for $P > 2.18 \mu m$, and difficult for $P < 2.18 \mu m$. In the first case, the hardness is decreasing with respect to the indentation depth, while in the second case, the effect is reversed.

When the dimensions of the indenter radius are larger than the intershell size (fig.6), the walls are impenetrable and the indenter motion is difficult. This leads to a strain hardening of the material, and the hardness is increasing with respect to the indentation depth. For $P < 2.18 \mu m$ the increase is slowly but becomes rapidly for $P > 2.18 \mu m$.

By comparing Figs.3 and 6, we see that the hardness increases significantly with respect to decreasing of the indenter size. For $P > 2.18 \mu m$, the intershell of the nanotubes come into contact with the indenter tip and the increase in load has different actions depending on the indenter size.

The indenter penetrability into material depends on the shear resistance of the intershell walls during the buckling of the multiwalled nanotubes. The shear resistance is calculated by taking into account the higher-order stresses gradient contribution, the latter is plotted in Fig.7. The value of the shear resistance is smaller for indenter radii $5 \mu m \leq R \leq 15 \mu m$ than for larger indenter radii $62.5 \mu m \leq R \leq 187.5 \mu m$. The resistance keeps a constant value for $R > 120$. This can explain the tendency of the hardness to decrease with respect to the indentation depth for lower shear resistance, and to increase for larger shear resistance. However, it should be noted that the higher-order stresses τ_{ijk} play an important role in refining the elastic buckling theory that account for additional physics. The results presented in this study show that the size significantly affects the nanoindentation hardness.

5 Concluding remarks

It is well-known that the nanoindentation hardness displays strong indentation size effects. In this paper, the size dependence of the hardness with respect to the depth and the indenter radius for the buckling of multiwalled carbon nanotubes is investigated using the Toupin-Mindlin strain gradient theory. As expected, the indentation hardness is closely related to the depth and the indenter radius. Qualitatively, the responses of the axially compressed multiple walled carbon nanotube agree remarkable well with the experimental observations.

The tendency of the hardness to decrease with respect to the indentation depth for lower shear resistance, and to increase for larger shear resistance, is a peculiar behavior which reveals the indentation size effects. When the dimensions of the indenter radius are comparable to the intershell size, the indenter motion is easier for $P > 2.18 \mu m$, and difficult for $P < 2.18 \mu m$. In the first case, the hardness
Figure 8: The hardness versus indentation depth in the case $l/R = 0.008$.

Figure 9: Shear resistance between the neighboring walls of the multiwalled nanotubes.
is decreasing with respect to the indentation depth, while in the second case, the
effect is reversed. When the dimensions of the indenter radius are larger than the
intershell size, the walls are impenetrable and the indenter motion becomes diffi-
cult. Therefore, the hardness is increasing with respect to the indentation depth;
for $P < 2.18 \mu m$ the increase is slowly but becomes rapidly for $P > 2.18 \mu m$. The
double stresses τ_{ijk} play an important role in refining the elastic buckling theory
that account for additional physics.

Acknowledgement: This research was financially supported by the National Au-
thority for Scientific Research (ANCS, UEFISCSU), Romania, through PN2 project
106/2007, CNCSIS code 247/2007. The authors would like to extend sincere thanks
to Dr. Liviu Marin for his help in preparing this paper.

References

Abramowitz, M.; Stegun, I.A. (eds.) (1984): _Handbook of mathematical func-
tions_, U.S. Dept. of Commerce.

Approaches for Solving the Weakly-Singular Traction(&) Displacement Boundary
Integral Equations. _CMES: Computer Modeling in Engineering & Sciences_.

Atluri, S.N.; Shen, S.P. (2002a): The mesh local Petrov-Galerkin (MLPG) method:
a simple & less-costly alternative to the finite element and boundary element meth-

Brenner, D. W.; Shenderova, O. A.; Areshkin, D. A.; Schall, J. D.; Frankland,
S.J.V. (2002): Atomic modeling of carbon-based nanostructures as a tool for devel-
oping new materials and technologies. _CMES: Computer Modeling in Engineering

Bulychev, S.I.; Alekhin, V.P.; Shorshorov, M.Kh.; Ternovskii, A.P. (1976): Me-
chanical properties of materials studied from kinetic diagrams of load versus depth
of impression during microimpression. _Strength Mater_. 8: 1084–1089.

Bulychev, S.I.; Alekhin, V.P.; Shorshorov, M.Kh.; Ternovskii, A.P.; Shnyrev,

Dumitriu, D.; Gauchs, G.; Chiroiu, V. (2008): Optimisation procedure for pa-

