A Geometric Embedding Algorithm for Efficiently Generating Semiflexible Chains in the Molten State

M. Kröger1, M. Müller2, and J. Nievergelt2

Abstract: We present a novel method for generating starting polymer structures for molecular simulations in the dense phase. The work describes the ingredients of an algorithm for the creation of large, dense or diluted amorphous polymeric systems close to equilibrium and provides measures for its quality. The model systems are made of semiflexible (wormlike) repulsive multibead chains. The key feature of the method is its efficiency, in particular for large systems, while approaching given local and global chain characteristics. Its output has been proven to serve as an excellent basis for subsequent off-lattice molecular dynamics computer simulation. By combining chain growing with an iterative relaxation technique we remove overlaps of monomers. The computing time is linear in the number of beads and independent of chain length. The method succeeds in generating large and dense (bulky and confined) systems of up to 100,000 beads in less than an hour on todays workstations.

keyword: semiflexible polymers, equilibrium structure, generation, benchmark, algorithm

1 Introduction

Computer simulations provide a powerful tool to investigate the microscopic origins of macroscopically observable transport phenomena. Monte Carlo type simulations are successfully used in the determination of conformational properties and phase diagrams of polymers [Binder and Ciccotti (1996)], molecular dynamics (MD) simulations are used to analyze the dynamics of polymeric systems and their response to external forces [Kremer et al. (1995), Allen and Tildesley (1987), Heermann (1988), Kröger (1998)]. Based on model fluids which are generated by our geometric embedding algorithm we use a MD simulation to provide information about the microstructural relaxation dynamics towards the equilibrium state, which - by definition - cannot be generated by a sample generator. In order to be feasible particulate simulations have to be based on simple, but not too simple, models [McLeish (2002)]. For modern perspectives on the variety of methods and a vision for future developments in multiscale simulations for nano- and micro-mechanics of materials see, e.g., [Ghoniem and Cho (2002), Srivastava and Atluri (2002)]. Recent results have confirmed that simulations can be used to predict rheological behavior of real polymers, even when the simulation model does not contain specific chemical details. This finding is not surprising in view that polymer melts possess certain 'universal' properties, cf. [de Gennes (1979)]. Although polymers may differ in flexibility or length, an appropriate reference parameter exists in each case that indicates the polymers are indeed similar in their inherent form. Because flow behavior is related to the polymer's inherent structure, qualitative rheological properties of polymer melts are largely independent of the chemical structure of the monomer repeat units. To visualize the features of the code we model a polymer melt in simple form as a mixtures of beads (soft balls), with \(N\) beads per chain whose connectivity is realized by (non-linear) springs (along the chains contours). In this flexible chain model a bead represents a number of chemical monomers.

A main difficulty when attempting to compute the statics and dynamics of dense model polymeric systems in equilibrium or even nonequilibrium situations by molecular/Brownian dynamics computer simulations is to generate and pre-equilibrate homogeneous samples by which these simulations can and should be started off, see [Kotelyanskii (1997), Brown et al (1994), Akkermans et al. (1998), Paul et al. (1997), Neyertz et al. (1996), Lin et al. (1996), Johnson (1996), Kröger (1999)]. This ini-
tional phase may occupy up to the half of the overall CPU time needed to analyze the system properties. One of the reasons is the particularly small integration time step during this ‘fluctuating’ phase, another one is the enormous increase of characteristic relaxation time of polymer chains with chain length (powers of 2 in dilute solution and 3.5 in melts are common). Hence it seems to be of help to distribute an efficient method to create polymeric samples with specific characteristics, which, for any choice of the break off criterion, represent as close as possible an equilibrated sample, i.e., a sample with not only the ‘correct’ local but also realistic global features. For the novel method the break off criterion is the minimum distance between center coordinates of nonbonded monomers. The minimum distance criterion has the feature that the maximum force (amplitude) acting between pairs of particles is thereby fixed for the sample, after being created. The force amplitudes, and more precisely the Einstein frequency, gives an accurate estimate for the integration time step of a subsequent molecular or Brownian dynamics run [Allen and Tildesley (1987), Heermann (1988)]. For the homogeneous system this procedure is comparable with a minimum energy criterion.

Up to the authors knowledge the literature provides two comparable algorithms, which are very efficient for small system sizes and generate amorphous polymers both in the melt and glassy states. i) The method presented in [McKechnie et al. (1992)] possesses a three-stage structure. The basic chain topology was obtained by a simple self-avoiding random walk using the part that restraining bonds, bond angles, and torsions of the Hamiltonian but without any van der Waals interactions except those between sites on the same chain separated by three others (i.e., the pentane effect). Following chain growth, the excluded volume effects are introduced and the whole structure is relaxed by a molecular dynamics using the full Hamiltonian. ii) The algorithm GenPol provided in [Kröger (1999)] exhibits similarities, but the system parameters such as the integration time step are coupled to the conformation of the system in order to speed up the relaxation process. During a dynamical two-step process of sample creation the initially (Monte Carlo step 1) predicted global characteristics of the molecular conformations remain quite unaffected (during molecular dynamics step 2) and the potential energy and the entropy production are relaxing towards their minima. The potentials, the distribution of bond lengths, the integration time step and temperature are smoothly controlled during the creation/relaxation process until they finally approach their prescribed values. The quality of their algorithm is by its nature independent of concentration, system size or degree of polymerization; the CPU speed is quite independent of the latter quantity and linear in the system size. Chains tethered to a surface (dry polymer brushes) can be generated as well. The authors provided a benchmark table, whose entries will be compared with the ones produced by the novel algorithm for same parameters. Chain generation methods have been used for applications and also been extended, see, e.g., [Akkermans et al. (1998), Paul et al. (1997), Neyertz et al. (1996), Lin et al. (1996), Johnson (1996), Kröger and Voigt (1994), Kröger (2001), Neyertz and Brown (1996), Brown et al. (1996), Widmann and Suter (1995), Yang et al. (1999)].

In contrast to the techniques described in [McKechnie et al. (1992), Kröger (1999)] our new algorithm ‘PolyGrow’ constructs the initial system of polymer chains by adding monomer beads one by one to a primarily empty box. This method is termed chain growing in the literature [Meirovitch (1983), Thedorou and Suter (1985)]. The new segments are added according to a choice criterion for achieving the target chain properties. At early stages of the chain growing process, the box is sparsely populated allowing the chains to grow in any direction. However, at later stages, the remaining monomers need to be fitted exactly into gaps left over by early stages. This major problem of the chain growing technique usually leads to asymmetric structures and to large sphere overlaps in dense packings. We solve this problem by combining chain growing with an iterative relaxation technique to remove overlaps of monomers. Since the relaxation is applied only locally, its time complexity is independent of the size of the system. Thus, the time complexity of the hybrid algorithm remains the same as the one of pure chain growing. The computing time is linear in the number of beads for the systems we investigate. PolyGrow succeeds in generating large and dense systems of up to 100,000 beads in less than an hour on todays workstations.

The manuscript is organized as follows: Sec. 2 specifies the potentials for the polymer chain model under consideration and it describes the method to analyze its dynamics. Sec. 3 is devoted to the description of the algorithm to generate starting structures for dense polymers under various conditions. The speed and reliability of the algo-
Embedding algorithm for dense polymeric systems

The novel algorithm is also designed to generate polymer brushes – in addition to free polymeric chain systems – in order to compare with previous works. For the case of a brush one of the tails of each molecule is conveniently located in the (x-y) plane, and chains do not cross this plane. For these systems the only additional parameter is the surface concentration σ (number of tails per area).

To summarize, the parameters of our wormlike (free) chain model are: the total number of beads N, the number of beads per chain M or the number of chains N/M, the bond length a_0, the bending rigidity κ, the temperature T, the bead number concentration ρ, the maximum extensibility R_0 and spring coefficient k of the FENE chain, and the surface concentration σ for polymer brushes.

The wormlike chain model can be simulated by molecular dynamics (MD) starting from an equilibrated initial start configuration. A MD computer simulation is a method for solving a classical many-particle problem. Using the model potential as a basis, the discretized Newtonian equations of motions are solved iteratively. A polymers physical quantities are extracted within a central simulation cell that contains all the monomers. Since we are interested in bulk properties, this original cell with all its particles is repeated periodically in all directions of space, except for the case of brushes (see previous section). The interaction between two monomers is calculated for their spatially closest representant; which can be original or image particles in neighboring cells. Based on previous research [Kremer and Grest (1990), Kröger et al. (1993)], a short-ranged Lennard-Jones, Eq. 1, upon a long-ranged intermolecular potential is used, which - for dense systems - covers the main physics and is advantageous in terms of the required calculation time.

\[U_{ij}^{\text{LJ}} = \begin{cases} 4\left[(r_{ij}^*)^{-12} - (r_{ij}^*)^{-6} + 1/4\right] & \text{for } r_{ij}^* \leq 2^{1/6} \\ 0 & \text{for } r_{ij}^* \geq 2^{1/6} \end{cases}, \]

where $r_{ij}^* \equiv r_{ij} - r_i$ denotes the vector between beads at space coordinates r_i (with $i = 1, \ldots, N$) and $r_{ij}^* \equiv |r_{ij}|$.

Here and in the following all quantities which are reduced to the usual LJ-units are denoted by an asterisk if otherwise ambiguities could arise. For beads which are nearest neighbors along the chain (for $N > 1$), an attractive potential (FENE-potential) is added, see e.g. [Kröger, Luap and Muller (1997)]:

\[U_{ij}^{\text{FENE}} = \begin{cases} -0.5k^*R_0^2 \ln\left[1 - (r_{ij}^*/R_0)^2\right] & \text{for } r_{ij}^* \leq R_0 \\ \infty & \text{for } r_{ij}^* \geq R_0 \end{cases}. \]

So far, these potentials set up a widely used model for flexible chains. Kratky and Porod introduced a semiflexibility by assuming an elastic bending energy for the chain

\[U^{\text{bend}} = \frac{k}{2} \int_0^L ds \left(\frac{\partial u}{\partial s} \right)^2 = \kappa a_0 \sum_{i=1}^{N-2} \left(1 - \frac{u_i \cdot u_{i+1}}{|u_i| |u_{i+1}|} \right), \]

with segment vectors $u_i \equiv r_{i+1} - r_i$, temperature T, Boltzmann’s constant k_B, bond length $a_0 \equiv \langle |u| \rangle$ and a persistence length $l_p \equiv \kappa/k_B T$, see e.g. [Doi and Edwards (1996)].

3 The PolyGrow Algorithm

PolyGrow handles the following problem: Given the model parameters $d < d_{\text{max}}$, a_0, κ, the number of beads N, the number of chains N/M and the number of beads per cube unit ρ, find coordinates for the centers of all N beads such that the spheres do not overlap and that a given distribution of bond angles is obtained. The quantity d_{max} corresponds to the actual maximum packing density at given bead density ρ.

To generate appropriate starting structures of wormlike polymers described in the previous section we hence process a simplified geometric model. The polymer is mod-
eled by a sequence of beads with fixed diameter d, which are connected by bonds of fixed length a_0. The target initial distribution of bond angles (θ), according to Eq. 3 is given by: $\text{prob}(\theta) \propto \exp[\kappa(1 - \cos\theta)]$.

3.1 Chain growing

The main loop of PolyGrow adds n chains of m beads to a primarily empty periodic box. This is done by repeatedly calling a procedure AddBead. If AddBead fails, the actual chain is removed and regrown at a new location. The pseudo code for AddBead reads

```pseudo
def AddBead()
    for all $p \in$ possible positions do
        if LookAhead($p$, searchDepth) then
            attach new bead at position $p$;
            return true;
        endif;
    endfor;
    for all $p \in$ possible positions do
        attach new bead at position $p$;
        if Relax() then return true;
        remove new bead;
    endfor;
    return false;
end
```

AddBead evaluates a discrete set of possible positions for the new bead. This step depends on the particular model of the polymer system e.g. the parameters a_0 and κ. Then, the positions are tested by the procedure LookAhead in random order. LookAhead performs a backtrack search of constant depth. It checks whether the chain can be elongated via the new position by a certain number of beads without overlaps. This step is necessary because the chains are not completely flexible. Their local flexibility is biased by the bending rigidity κ:

```pseudo
def LookAhead($p$, depth):
    if depth $\leq$ 0 then return true;
    for all $p_{\text{succ}} \in$ possible successors of $p$ do
        if $p_{\text{succ}}$ does not overlap then
            if LookAhead($p_{\text{succ}}$, depth-1) then return true;
        endif;
    endfor;
    return false;
end
```

If inside the first loop of AddBead a position p is found that can be extended by at least depth beads without overlaps, a new bead is attached at this location. Otherwise another strategy is applied: The second loop tests all possible positions in the order of their expected quality. The quality is measured by the overlap of p or by the number of beads the chain can grow via p without overlap.

The new bead is attached at position p although it may generate overlaps with existing beads. If the new bead does not overlap with any other beads, AddBead returns successfully. Otherwise, the newly produced overlaps need to be removed. This is not a trivial task, since the colliding beads belong to earlier generated chains. If these beads are moved, adjacent bond lengths as well as bond angles will change. However, neither bond lengths, nor bond angle statistics should be disturbed during the collision correction. The only way to modify the positions of beads inside a chain while keeping bond lengths and bond angles fixed, is a simultaneous (concerted) rotation of at least seven torsion angles. This move is described in detail in [Dodd et al. (1993)] where a complex procedure to evaluate the values of the seven torsion angles is presented. This procedure needs to be performed simultaneously on all the chains, contributing to the collisions of the newly positioned bead.

3.2 Local relaxation

Fortunately there is a way to avoid the complex computations of concerted rotations. Since the set of beads that need to be moved form a rather small and local system of particles, a simple relaxation algorithm is suitable to solve the local packing problem. The algorithm Relax we use is simple and general in the sense that it can handle problems of the following form: Given a set of
Table 1: Benchmarks obtained with GenPol (R10000 at 195 MHz) and PolyGrow (Ultra-Sparc-II at 248 MHz) for the generation of monodisperse polymer systems of different size, bulk density and different choices for the final minimum distance between monomers. The specified samples S1-S5 are discussed in more detail in this work.

<table>
<thead>
<tr>
<th>sample</th>
<th>total beads</th>
<th>chain length</th>
<th>chains</th>
<th>bead density</th>
<th>surface density</th>
<th>minimum distance</th>
<th>GenPol time (s)</th>
<th>PolyGrow time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>1000</td>
<td>1000</td>
<td>1</td>
<td>0.8</td>
<td>0.8</td>
<td>22</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>1000</td>
<td>1000</td>
<td>1</td>
<td>0.9</td>
<td>0.9</td>
<td>—</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>1000</td>
<td>1000</td>
<td>1</td>
<td>1.0</td>
<td>0.8</td>
<td>27</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>1000</td>
<td>100</td>
<td>10</td>
<td>0.9</td>
<td>—</td>
<td>24</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>1000</td>
<td>100</td>
<td>10</td>
<td>1.0</td>
<td>0.9</td>
<td>25</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>5000</td>
<td>100</td>
<td>50</td>
<td>0.8</td>
<td>0.8</td>
<td>130</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>10000</td>
<td>100</td>
<td>100</td>
<td>0.8</td>
<td>0.8</td>
<td>340</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>30000</td>
<td>50</td>
<td>600</td>
<td>0.8</td>
<td>0.9</td>
<td>—</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>100000</td>
<td>100</td>
<td>1000</td>
<td>0.8</td>
<td>0.8</td>
<td>8050</td>
<td>959</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>5000</td>
<td>100</td>
<td>50</td>
<td>0.4</td>
<td>0.2</td>
<td>69</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>5000</td>
<td>100</td>
<td>50</td>
<td>0.8</td>
<td>0.4</td>
<td>240</td>
<td>206</td>
<td></td>
</tr>
</tbody>
</table>

3.3 The Complexity of PolyGrow

To analyze the time complexity of PolyGrow, we split the computing time into the time used by AddBead to add a new bead to the system and the number of times AddBead is called.

The time used by AddBead is independent of the problem size. The number of possible positions for the new bead is constant. For each position, a search of constant depth is started. If there is no space for the new bead, Relax is called at most once for each new position. The number of particles Relax moves is independent of the problem size. Therefore, the total time used to add one bead is independent of the total number of particles in the system.

Since AddBead can fail, it is difficult to predict how many times it is called during the packing process. If \(N \) is the number of beads, AddBead is called exactly \(N \) times in case it never fails. This leads to linear time complexity \(O(N) \) in the best case.

As our experiments show, PolyGrow reaches linear time complexity for realistic systems of wormlike polymer chains (see section 4.1).

3.4 Polymer brushes and z-alignment

PolyGrow allows to generate special kinds of polymer systems such as polymer brushes and z-aligned chains. These additional constraints only affect the part of the code inside AddBead where the set of possible positions is produced. For polymer brushes, the first bead is fixed in the \(z = 0 \) plane. Additional distance constraints prevent the chains from crossing the top and bottom planes of the periodic box. Z-alignment is implemented by favouring new positions along the \(z \)-axis.

4 Results

4.1 Time needed to generate pre-equilibrated samples

To analyze the time complexity of PolyGrow we adopted the default system parameters from [Kröger (1999)]: systems size \(N = 1,000 \), chain length \(M = 100 \), density \(\rho = 0.9 \), diameter (break off criterion) \(d = 0.9 \) and stiffness \(k = 4 \) and varied the three relevant parameters: \(N, \rho \) and \(M \).

Figure 1 depicts the time used by PolyGrow to pack systems of various sizes \(N \). We compare our results with the performance of GenPol [Kröger (1999)], the fastest method to generate wormlike amorphous polymer systems at present. PolyGrow shows a linear behavior while the time used by GenPol increases slightly steeper. The squares show the time used by GenPol, the triangles represent average values over 5 runs of PolyGrow. The two lines above and below the triangles show the standard deviation. PolyGrow is between two and five times faster.
than GenPol depending on the system size.

The dependence of the execution time on the systems density ρ is nonlinear. Above a certain value for ρ the problem becomes unsolvable, there is no way to pack the chains without overlapping spheres. Up to the conventional melt density of 0.9 particles per cube unit, the execution time does not increase dramatically, as Fig. 2 shows. However, PolyGrow is unsuitable for densities above 1.0. For very high densities, GenPol is more efficient. It is able to pack systems up to 1.5 particles per cube unit.

The final parameter to be analyzed is the chain length M. As depicted in Fig. 3, the execution time of PolyGrow is independent of the lengths of the chains. The standard deviations over 20 runs are much higher than the differences in the average values. The task to finish a chain and to begin an new one during the chain growing process does neither take too much time, nor does this additional degree of freedom simplify the problem significantly.

4.2 The quality of generated structures

In order to check the quality of the algorithm and the reliability of the generated samples we will show some dynamical quantities, i.e. relaxation behavior obtained by subsequent conventional molecular dynamics (MD) simulation [Kröger et al. (1993), Kröger, Luap and Muller (1997)]. All the samples listed in Tab. 1 were generated by our geometric embedding algorithm and used as starting configuration for the MD. In addition to the listed parameters the MD requires to specify the interaction potential between neighboring beads within chains and the intermolecular interaction potentials as well as the integration time step. Newton’s equation of motion were integrated using the velocity Verlet algorithm, neighbor lists, layered link cells, see e.g. [Allen and Tildesley (1987), Rapaport (1991), Kremer and Grest (1990), Kröger et al. (1993)] and Lees-Edwards boundary conditions [Allen and Tildesley (1987)], with a time step of $\Delta t = 1/200$. With the choice for the finite extensibility of the FENE-spring $R_0 = 1.5$ and $k^* = 30$ we follow previous investigations [Kremer and Grest (1990), Kröger et al. (1993), Kröger (2001)].

Next, we will analyze (and give the definitions for) quantities which have been extracted from the bead trajectories during the course of the ‘computer’ relaxation expere-
Embedding algorithm for dense polymeric systems

Figure 3: Computing time of PolyGrow versus chain length. (Ultra-Sparc-II at 248 MHz). System parameters: \(N = 1,000, M = 10 \ldots 1000, \rho = 0.9, d = 0.9 \) and \(k = 4.5 \). As in Fig. 8 the dashed line represents reference results obtained with GenPol.

\[S_{sc}(q) \text{ vs wave number } q \text{ as a measure for the bead-bead correlation on all length scales (in reciprocal space) for samples S1-S4 (see Eq. 4).} \]

The structure factors for the equilibrated samples S1-S4 are given in Fig. 4 and the quality of a specific sample is demonstrated by Fig. 5. The chains are ‘pre-equilibrated’ on all lengths scales directly after their generation by the novel algorithm. This is quite remarkable in view of previous studies, see [Kröger (1999)]. In addition to the structure factors we extracted the relaxation of the radius of gyration \(R_G \) towards its equilibrium value, see Fig. 6 for all samples.

Order parameter

A quantity characterizing the systems anisotropy is called order parameter. For polymer brushes there is a single distinguished, the one which is perpendicular to the anchoring plane, which we have chosen to be \(x-y \)-direction. The order parameter is defined as the average \(\langle P_2(u \cdot e_z) \rangle \) over all segment vectors \(u \), where \(e_z \) (in our case) is directed along the \(z \)-axis and \(P_2 \) is the second Legendre polynomial. For bulk samples composed of free flexible chains the order parameter has to vanish, as soon as the chains become less flexible, local or even global ordering of chains may take place, resulting from steric interactions, and an isotropic to nematic transition occurs. This leads to large fluctuations in the

This expression is obtained by a Taylor series expansion of \(S_{sc} \) in Eq. 4 around \(k = 0 \). It provides a direct measure of the length \(M \) of polymer chains.

\[M S_{sc}(k) = 1 + k^2 \frac{R_g^2}{3} \approx 1 + k^2 \frac{R_g^2}{3} \] for \(kR \ll 1 \).
order parameter. The order parameter for the polymer brushes S2, S3 is shown in Fig. 7. Both samples possess the same anisotropy at the startup of the equilibration phase (time $t \equiv 0$, the first extraction was made at $t = \Delta t$), but relax to different values, in accord with the different bead densities which do not enter our sample generator. With increasing densities (bulk and surface) the chains increase their alignment perpendicular to the anchoring plane. The observed relaxation time is of the order of magnitude of the orientational relaxation time of chains, and thus, as fast as possible.

Persistence length

According to Eq. 3 the persistence length, a measure for the local stiffness, is obtained from

$$l_p = \frac{1}{2(M-2)} \sum_{i=1}^{M-2} u_i \cdot u_{i+1}.$$ (6)

with segment vectors u_i ($i = 1, \ldots, M - 1$). The relaxation of persistence lengths for all samples towards their equilibrium values is reported in Fig. 8. Again, the deviation between equilibrium values and initial values (at time=0) is small, as required for an algorithm which does not only fulfill the constraint of minimum distance, but

5 Conclusions

This work provides the structural elements of a method to generate macromolecular fluids close to equilibrium, which is basically needed and a difficult task for all types of molecular dynamics computer simulations dealing with polymers in the glassy, molten or highly concentrated states. The problem is geometrical in nature and does not occur for short molecules. The work includes quantitative measures of the quality (local and global entities, molecular structure factors) of the method as well as a benchmark table in order to make the comparison with earlier works transparent.

We combined a constructive chain growing process with an iterative technique to remove local overlaps of beads.
Embedding algorithm for dense polymeric systems

This hybrid algorithm permits to tackle the problem of packing large systems of wormlike polymers (up to 100,000 beads) into periodic boxes five times faster than the best of today’s methods. Chain growing is very efficient but it may run into troubles during the packing process. On the other hand, relaxation is much more expensive but it is needed only locally in the environment of the newly placed bead. The combination of the both processes turns out to be a suitable way of constructing large and dense polymer systems. The method was clearly motivated by previous works [McKechnie et al. (1992), Kröger (1999)]. The intra- and intermolecular potentials used in the simulations define the microscopic model of the polymer fluid. The coarse grained model used here is able to reproduce properties of real substances as well as providing complete information on the microscopic molecular motions. Recent results have shown that simulations can be used to predict rheological behavior of real polymer melts, even if the simulation model does not contain specific chemical details [Hess (1987), Gao and Weiner (1992), Kröger (2001)] in accordance with predictions on self-similarity and universality in polymer systems [de Gennes (1979)].

From a simulation of a polymer system one correlates the polymer microstructure (i.e. the form and the orientation

Figure 7: Transient behavior of the order parameter for the polymer brushes, samples S2-S3. The order parameter measures the degree of alignment in direction perpendicular to the anchoring plane, which is the \(x-y \)-direction, and the order parameter is defined as the average \(\langle P_2(u \cdot e_z) \rangle \) over all segment vectors \(u \), where \(e_z \) is directed along the \(z \)-axis. For samples S1, S4 (free chains) the order parameter approximately vanishes, which is not shown here, but is reflecting the quality of the sample generator as well.

Figure 8: Persistence length as a measure for the local stiffness of chains vs time for samples S1-S4 (see Sec. 4, Tab. 1).

Figure 9: The sums of squared interaction forces for samples S2 and S3 (polymer brushes, see Tab. 1), respectively, which are proportional to the Einstein frequencies of the particular systems. For these samples the relaxation of this quantity towards its mean value is slow compared to that of the other samples containing unconstrained polymers.
of the chains and entanglements between chains) with its mechanical behavior. The simulation is conducted to test and improve mesoscopic theories such as those that describe orientation and distribution functions of polymers [Bird et al. (1987), Öttinger (1996)]. Only a portion of the available microscopic information is reflected in these theories. A further advantage of the simulation is its capability of focusing on measuring a particular quantity, such as specific contributions to the stress tensor, entanglements between polymer chains or the scattering diagram of individual polymers.

References

Embedding algorithm for dense polymeric systems

1131.

