Abstract: A state space differential reproducing kernel (DRK) method is developed for the three-dimensional (3D) buckling analysis of simply-supported, carbon nanotube-reinforced composite (CNTRC) circular hollow cylinders and laminated composite ones under axial compression. The single-walled carbon nanotubes (CNTs) and polymer are used as the reinforcements and matrix, respectively, to constitute the CNTRC cylinder. Three different distributions of CNTs varying in the thickness direction are considered (i.e., the uniform distribution and functionally graded rhombus-, and X-type ones), and the through-thickness distributions of effective material properties of the cylinder are determined using the rule of mixtures. The 3D linear buckling theory is used, in which a set of membrane stresses is assumed to exist in the cylinder just before instability occurs, and this is regarded as the initial stresses introduced in the formulation. The Euler-Lagrange equations perturbed from the state of neutral equilibrium are derived using the Reissner mixed variational theorem. The primary field variables, displacement and transverse stress components, are expanded as the single Fourier series in the circumferential coordinate, and then interpolated in the axial coordinate using DRK interpolation functions. Finally, the state space equations of this problem are obtained, which represent a system of ordinary differential equations in the thickness coordinate. The state space DRK solutions of the critical load parameters of the cylinder can thus be obtained by means of the transfer matrix method combined with the successive approximation one, and the convergence and accuracy of the state space DRK solutions are validated by comparing these solutions with exact 3D ones available in the literature and approximate 3D ones obtained using the ANSYS software.

Keywords: Meshless methods, state space methods, buckling, functionally graded materials, Carbon nanotubes, Cylinders.
1 Introduction

The stability of functionally graded material (FGM) structures is an important subject in various engineering applications because it is the dominant failure occurring in these structures, and has therefore attracted considerable attention in recent decades. Unlike the conventional fiber-reinforced composite (FRC) structures, such as the graphite/epoxy, boron/epoxy and glass/epoxy composite ones, the material properties of which are layer-wise constant variations through the thickness direction, those of FGM structures are designed to vary continuously and smoothly through this, which results in a more complicated problem to be analyzed than that involving FRC structures.

Carbon nanotubes (CNTs) have extraordinary mechanical properties, and have thus started to be used as reinforcements, instead of conventionally continuous carbon (graphite) fibers, that are randomly embedded in the polymer matrix to produce carbon nanotube-reinforced composite (CNTRC) structures [Coleman et al. (2006); Esawi and Farag (2007); Chou et al. (2010)]. Various mechanical analyses of these structures are thus needed to realize their static and dynamic characteristics, the results of which can be used to provide design standards to engineers, and enhance the lifetimes of the related objects. Comprehensive surveys with regard to the relevant theoretical methodologies and numerical models of FRC/CNTRC structures can be found in the literature [Noor and Burton (1990a, b, 1996); Noor et al. (1991); Saravanos and Heyliger (1999); Odegard et al. (2002); Carrera (2000a, b, 2003); Wu et al. (2008); Carrera and Brischetto (2009); Hackett and Bennett (2012)]. Among these articles, the current literature survey will focus on those ones dealing with the buckling and postbuckling analyses of functionally graded (FG) CNTRC cylinders and laminated FRC ones under thermo-mechanical loads.

Numerous two-dimensional (2D) buckling analyses of FG CNTRC cylinders and laminated FRC ones subjected to thermo-mechanical loads have been presented. Sallam and Simitses (1987) and Simitses and Chen (1988) studied the delamination buckling of cylindrical shells with either fully simply-supported or clamped edges and under external pressure and axial compression, in which Donnell-type kinematic nonlinearity [Donnell (1976)] and linearly elastic material behavior were used. Based on higher-order shear deformation theory (HSDT), Anastasiadis and Simitses (1993) presented the buckling analysis of pressure-loaded, laminated cylindrical shells, in which the buckling equations corresponding to the classical shell theory (CST), first-order shear deformation theory (FSDT), and HSDT were derived, and their results were compared with those of other work. Anastasiadis et al. (1994) presented the instability behaviors of moderately thick, laminated cylindrical shells under combined axial compression and external pressure, in which a parametric study with regard to the effects of those on the critical load parameter-
s of the shells was carried out, such as the effects of shear deformation, stacking sequence, and length-to-radius and radius-to-thickness ratios. Dumir et al. (2001, 2003, 2005) presented the axisymmetric static and dynamic buckling of laminated, moderately thick truncated conical caps and annular spherical ones with combinations of clamped and simply-supported edges and under transverse loads, in which the Marguerre-type FSDT was formulated, and the dependence of the transverse shear deformation effect on the thickness parameter for various boundary conditions was investigated. Based on the HSDT combined with von Karman kinematic nonlinearity, Shen and Chen (1991), Shen et al. (1991) and Shen (2001) undertook the buckling and postbuckling analyses of stiffened and non-stiffened laminated cylindrical shells under hygrothermal environments, and combined axial compression and external pressure. Shen (2011a, b, 2012) also presented the analyses of CNTRC cylindrical shells under pure axial compression and pure external pressure in thermal environments, in which the material properties were considered to be temperature-dependent and assumed to be either uniformly distributed (UD) or varying in functionally graded manner through the thickness coordinate. Lei et al. (2013a, b) developed the element-free \(kp \)-Ritz method for the nonlinear bending and linear buckling analyses of CNTRC plates under various in-plane mechanical loads, the material properties of which were estimated using either the Eshelby-Mori-Tanaka approach or the extended rule of mixtures. The results demonstrated that the effects of the volume fraction of CNTs, different distributions of CNTs, aspect ratio, length-to-thickness ratio and different loading conditions on critical load parameters of the plate are significant.

While some exact and approximate three-dimensional (3D) buckling analyses of laminated composite structures and FGM ones have also been presented, such analyses are relatively few in comparison with the above-mentioned 2D ones, because they require more mathematical manipulation. Kardomeas (1993, 1995) presented the 3D buckling analysis of thick orthotropic circular hollow cylinders under axial compression and external pressure, in which the bifurcation of equilibrium of these cylinders was studied on the basis of 3D elasticity theory, and the critical loads over a wide range of the length-to-radius and thickness-to-radius ratios were discussed. Based on the principle of virtual displacements (PVD), Soldatos and Ye (1994) and Ye and Soldatos (1995) developed the state space method in combination with the successive approximation (SA) one to study the 3D buckling of homogeneous/laminated composite cylinders and cylindrical panels. Within the framework of 3D elasticity theory, Wu and Chen (2001) presented asymptotic solutions for the buckling of multilayered anisotropic conical shells under axial compression, in which the 3D axially compressed buckling problem was separated into a series of 2D buckling ones governing with the partially differential equations of
the CST, and the differential quadrature (DQ) method was used to determine the critical load parameter of each order problem, which can then be obtained order-by-order in a consistent and hierarchical manner. This 3D asymptotic approach was subsequently extended to the thermoelastic buckling and thermally induced dynamic instability of laminated composite conical shells by Wu and Chiu (2001, 2002). Based on Carrera’s unified formulation (CUF) [Carrera (2003); Carrera and Ciuffreda (2005)] combined with a variable kinematics model, Carrera and Soave (2011) and D’Ottavio and Carrera (2010) carried out the linear buckling analyses of FGM structures and laminated composite ones. It is noted that most of the above-mentioned articles deal with the 3D buckling analysis of laminated FRC plates/shells, and few examine FG CNTRC structures.

The state space method [Ye (2003)] has been successfully used for exact 3D vibration, buckling and bending analyses of simply-supported, laminated FRC plates/shells and FGM ones by Ye and Soldatos (1994a, b), Chen et al. (2001), and Wu and Liu (2007). In recent years, this method has been used in combination with other numerical modeling approaches to undertake the analyses of structures with various boundary conditions. For example, Sheng and Ye (2002, 2003) developed a 3D state space finite element method (FEM) for the static analysis of laminated composite plates and cylindrical shells, in which the traditional FEM was used to approximate the in-surface variations of state variables, and a state space formulation was then obtained to determine the through-thickness distributions of assorted field variables. This state space FEM was also extended to investigate the free-edge effect on the bending and extensional analyses of cross-ply laminated hollow cylinders subjected to transverse and in-surface mechanical loads by Ye and Sheng (2003) and Ye et al. (2004). Chen and Lü (2005) and Lü et al. (2008, 2009) developed a state space DQ method for the approximate 3D bending analysis of laminated composite plates and FGM ones with one pair of simply supported opposite edges, in which the DQ method, instead of the FEM, was used to interpolate the primary variables.

In recent decades, a new class of computational methods, so-called meshless methods, have been developed and applied to a variety of mechanical problems with elastic solids, in which the construction of the shape functions of the unknown function is based on a set of randomly distributed nodes without any predefined mesh to provide connectivity of the nodes, unlike the conventional FEMs, in which this is based on a predefined one. In these meshless methods, the unknown approximation and interpolation are constructed using the moving least squares, reproducing kernel, and radial basis function schemes. Comprehensive surveys of meshless methods have been undertaken by Belytschko et al. (1996), Atluri and Shen (2002a, b), Atluri (2004), Li and Liu (2002, 2004), Liu and Gu (2005) and
Liew et al. (2011). In this paper, the literature survey will focus on the mechanical analysis of FGM structures using the meshless methods. Based on the Reissner-Mindlin theory, Sladek et al. (2008a, b) presented the elasto-thermal analyses of FGM plates and shallow shells under thermal loading and using the meshless local Petrov-Galerkin (MLPG) method, which has also been used for the stress, displacement and heat conduction analyses of 3D anisotropic FG solids [Sladek et al. (2008, 2009)]. Based on the FSDT, Zhao et al. (2009a, b) and Zhao and Liew (2011) developed an element-free kp-Ritz method for the thermo-elastic and free vibration analyses of FG plates, cylindrical shells and conical ones. The meshless methods not only provide a novel alternative for the mechanical analyses of FG elastic and piezoelectric structures and laminated FRC ones, but also overcome some drawbacks of FEM with regard to treating discontinuity, moving boundary and large deformation problems.

The differential reproducing kernel (DRK) interpolation method and its Hermite counterparts [Yang et al. (2010); Wang et al. (2010); Chen et al. (2011)] were developed for the analysis of elastic solids, in which the determination of shape functions of derivatives of RK interpolation functions were obtained using a set of differential reproducing conditions without taking the differentiation from the RK ones, which makes these DRK methods less time-consuming and more efficient for the calculation of the derivatives of unknown functions. Based on the above-mentioned benefits of the state space and DRK interpolation methods, Wu and Jiang (2012) proposed a state space DRK method to investigate the 3D static behaviors of sandwiched FGM/FRCM hollow circular cylinders with combinations of simply-supported and clamped edges and under transverse mechanical loads, which were also studied by Wu and Li (2013) using the finite cylindrical prism method based on the Reissner mixed variational theorem (RMVT) [Reissner (1984, 1986)], which is an extension of the finite cylindrical layer method developed by Wu and Chang (2012) for the approximate 3D analysis of simply supported, FGM sandwich cylinders.

After a close literature survey, we found that there are few articles dealing with the 3D axially compressed buckling analysis of multilayered FGM cylinders, very few that deal with CNTRC ones, and that state space-based numerical models seem to be an efficient tool for the analysis of functionally graded CNTRC structures and laminated FRC ones. This article thus aims at applying the state space DRK method, in which the DRK interpolation functions, proposed by Wang et al. (2010) and Wu and Yang (2011a, b), is used to interpolate the primary field variables. Based on 3D linear buckling theory, in which a set of membrane stresses is assumed to exist in the cylinder just before instability occurs, and which are introduced as the initial ones in the formulation, we derive the Euler-Lagrange equations perturbed
from the state of neutral equilibrium using the RMVT, the advantages of which have been stated by Wu and Tsai (2012) and Wu and Jiang (2011). The solution process of this state space DRK method is described as follows: (a) the primary field variables are first expanded as the single Fourier series in the circumferential coordinate, and then the 3D problem can be reduced to a 2D one; (b) these variables are further interpolated in the axial coordinate using DRK interpolation functions, with which the corresponding boundary conditions are required to be satisfied; (c) the state space equations of this 3D buckling problem are obtained, which represent a system of ordinary differential equations in the thickness coordinate, and the state space DRK solutions can then be obtained by means of the transfer matrix method combined with the SA one. In the illustrative examples, the accuracy and convergence of this method are examined by comparing these solutions with the exact 3D ones of simply-supported, multilayered composite cylinders available in the literature as well as with the accurate solutions of those cylinders using the ANSYS software. Moreover, a parametric study with regard to some geometric and material parameter effects on the critical load parameters of FG CNTRC cylinders and laminated FRC ones is carried out, such as the volume fraction of CNTs, different distributions of CNTs, and radius-to-thickness and length-to-radius ratios.

2 Carbon nanotube-reinforced composite cylinders

In this article, we consider either a carbon nanotube-reinforced cylinder or a laminated FRC one, as shown in Fig. 1, in which the edges of the cylinder are simply supported, and \(L \), \(R \) and \(h \) denote the length, mid-surface radius and thickness of the cylinder, respectively. The global cylindrical coordinates (i.e., \(x \), \(\theta \) and \(r \) ones) are located on the center of the cylinder, and the global and local thickness coordinates (i.e., \(\zeta \) and \(z_m \) \((m = 1 - N_l)\) ones, in which \(N_l \) is the total number of the layers constituting the cylinder) are located on the mid-surface of the cylinder and that of each layer, respectively, in which, \(r = R + \zeta \), and \(\zeta = [(\zeta_m + \zeta_{m-1})/2] + z_m \), where \(\zeta_m \) and \(\zeta_{m-1} \) are the thickness coordinates of the top and bottom surfaces of the \(m^{th} \)-layer. The thicknesses of each individual layer and the cylinder are \(h_m \) \((m = 1, 2, \cdots, N_l)\) and \(h \), respectively, while \(\sum_{m=1}^{N_l} h_m = h \).

There are three different distribution functions of carbon nanotubes varying in the thickness direction considered in this article, which are the uniform distribution (UD) function, and FG rhombus- (R-), and X-shaped ones. The rule of mixtures is used to determine the through-thickness distributions of effective material properties of the CNTRC cylinder, which are written as follows:

\[
E_{11} = \eta V_{CNT} (E_{11})_{CNT} + (V_m E_m),
\] (1a)
Figure 1: The configuration and coordinates of an FG CNTRC cylinder and a laminated composite one.

\[(\eta_2/E_{22}) = V_{CNT} / (E_{22})_{CNT} + (V_m/E_m), \quad (1b)\]

\[(\eta_3/G_{12}) = V_{CNT} / (G_{12})_{CNT} + (V_m/G_m), \quad (1c)\]

in which \((E_{11})_{CNT}, (E_{22})_{CNT},\) and \((G_{12})_{CNT}\) denote the Young’s moduli and shear modulus of CNTs; \(E_m\) and \(G_m\) stand for those of the polymer; \(\eta_i\) \((i = 1, 2, 3)\) are the CNT efficiency parameters, and \(V_{CNT}\) and \(V_m\) are the volume fractions of CNTs and polymer, respectively, in which \(V_{CNT} + V_m = 1\).

The through-thickness distributions of the volume fraction of CNTs, \(V_{CNT}\), for the above-mentioned three types of CNTRC cylinders are given as follows:

\[V_{CNT} = V_{CNT}^*, \quad \text{(UD-type CNTRC cylinders)}, \quad (2a)\]

\[V_{CNT} (\zeta) = 2 \left[1 - (2 |\zeta|/h)\right] V_{CNT}^* \quad \text{(FG R-type CNTRC cylinders)}, \quad (2b)\]

\[V_{CNT} (\zeta) = 2 (2 |\zeta|/h) V_{CNT}^* \quad \text{(FG X-type CNTRC cylinders)}, \quad (2c)\]

in which

\[V_{CNT}^* = W_{CNT} / [W_{CNT} + (\rho_{CNT}/\rho_m) - (\rho_{CNT}/\rho_m) W_{CNT}],\]

and \(W_{CNT}\) denotes the mass fraction of CNTs in the CNTRC cylinder, and \(\rho_{CNT}\) and \(\rho_m\) are the mass densities of the CNTs and polymer, respectively.
Similarly, the Poisson’s ratio ν_{12} of the FG CNTRC layer is determined as follows:

$$\nu_{12} = V_{\text{CNT}}^* (\nu_{12})_{\text{CNT}} + (V_m \nu_m),$$

(3)

in which $(\nu_{12})_{\text{CNT}}$ and ν_m are the Poisson’s ratios of the CNT reinforcements and the polymer matrix, respectively, and ν_{12} is considered as a constant through the thickness coordinate of the FG CNTRC layer.

Using Eqs. (1a-c), (2a-c) and (3), we can obtain the through-thickness distributions of effective properties of FG CNTRC cylinders, which will be applied to the illustrative examples later in this article.

3 Pre-buckling state in a multilayered FGM cylinder

Without loss of generality, we will begin the derivation of a unified formulation for the stability analysis of simply supported, multilayered FGM cylinders under an axial compressive load (P_x). The FG CNTRC cylinders and laminated FRC ones considered in this article can be included as the special cases of multilayered FGM cylinders, such that the former are single-layered FGM ones and the latter are multilayered homogeneous ones.

According to the assumptions of the linear instability approach, a set of membrane stresses exists in the cylinder just before instability occurs. In a symmetrically FG orthotropic cylinder subjected to axial compression, the displacement components of the m^{th}-layer at the initial position are expected in the following form,

$$\bar{u}_{x}^{(m)} = A_0 x, \quad \bar{u}_{\theta}^{(m)} = 0, \quad \text{and} \quad \bar{u}_{r}^{(m)} = A_0 \bar{W}_0^{(m)} (\zeta) \quad m = 1, 2, \cdots, N_l,$$

(4a-c)

where A_0 denotes the assumed uniform axial strain, which is an arbitrary constant, and can be determined later in this article by means of satisfying the force equilibrium equation in the axial direction at edges. In addition, the pre-buckling deformations in the cylinder are assumed to be axisymmetric and plane strain ones.

According to the initial displacement model given in Eq. (4), it is assumed that in the pre-buckling state the cylinder is free of initial shear stresses (i.e., $\bar{\tau}_{xr}^{(m)} = \bar{\tau}_{\theta r}^{(m)} = \bar{\tau}_{x \theta}^{(m)} = 0, \quad m = 1, 2, \cdots, N_l$), and the initial normal stresses in the m^{th}-layer can be expressed as

$$\bar{\sigma}_{x}^{(m)} (\zeta) = A_0 \bar{\sigma}_{x0}^{(m)} (\zeta), \quad \bar{\sigma}_{\theta}^{(m)} (\zeta) = A_0 \bar{\sigma}_{\theta 0}^{(m)} (\zeta), \quad \text{and} \quad \bar{\sigma}_{r}^{(m)} (\zeta) = A_0 \bar{\sigma}_{r 0}^{(m)} (\zeta) \quad m = 1, 2, \cdots, N_l,$$

(5a-c)

where

$$\bar{\sigma}_{x0}^{(m)} = Q_{11}^{(m)} + \left(Q_{12}^{(m)} / r \right) \bar{W}_0^{(m)} + Q_{13}^{(m)} \bar{\sigma}_{r 0}^{(m)},$$
\[\sigma_{\theta 0}^{(m)} = Q_{12}^{(m)} + \left(\frac{Q_{22}^{(m)}}{r} \right) \bar{W}_{0}^{(m)} + Q_{23}^{(m)} \bar{\sigma}_{r 0}^{(m)}, \]

\[\bar{\sigma}_{r 0}^{(m)} = c_{13}^{(m)} + \left(\frac{c_{23}^{(m)}}{r} \right) \bar{W}_{0}^{(m)} + c_{33}^{(m)} \left(\bar{W}_{0}^{(m)} / \zeta, \bar{\zeta} \right), \]

\[Q_{ij}^{(m)} = c_{ij}^{(m)} - \left(c_{i 3}^{(m)} c_{j 3}^{(m)} / c_{33}^{(m)} \right) (i, j = 1, 2 \text{ and } 6), \]

\[Q_{k 3}^{(m)} = c_{k 3}^{(m)} / c_{33}^{(m)} (k = 1 \text{ and } 2), \]

and \(c_{ij}^{(m)} \) denotes the material elastic coefficients of the \(m^{th} \)-layer, which is a constant for the multilayered composite cylinder and a function of the thickness coordinate for the FG CNTRC one, while the comma denotes partial differentiation with respect to the suffix variable.

According to the initial displacement model given in Eq. (4), the stress equilibrium equations in the axial and circumferential directions are automatically satisfied, and the one in the radial (or thickness) direction is given as follows:

\[\bar{\sigma}_{r 0}^{(m)}, \bar{\zeta} = \left[\left(\frac{Q_{23}^{(m)} - 1}{r} \right) / r \right] \bar{\sigma}_{r 0}^{(m)} + \left(\frac{Q_{22}^{(m)}}{r^2} \right) \bar{W}_{0}^{(m)} + \left(\frac{Q_{12}^{(m)}}{r} \right). \] (6)

Using Eqs. (5c) and (6), we can write the state space equations of the pre-buckling state of the cylinder in the following form

\[\frac{d \bar{F}^{(m)}}{d \zeta} = \bar{K}^{(m)} \bar{F}^{(m)} + \bar{K}^{(m)}_{p}, \] (7)

where

\[\bar{F}^{(m)} = \left\{ \bar{W}_{0}^{(m)}(\zeta), \bar{\sigma}_{r 0}^{(m)}(\zeta) \right\}, \bar{K}^{(m)} = \left[\bar{k}_{11}^{(m)} \bar{k}_{12}^{(m)} \bar{k}_{21}^{(m)} \bar{k}_{22}^{(m)} \right], \bar{K}^{(m)}_{p} = \left\{ -Q_{13}^{(m)} \left(\frac{Q_{12}^{(m)}}{r} \right) \right\}, \]

\[\bar{k}_{11}^{(m)} = -Q_{23}^{(m)} / r, \bar{k}_{12}^{(m)} = \left(1 / c_{33}^{(m)} \right), \bar{k}_{21}^{(m)} = \left(Q_{22}^{(m)} / r^2 \right) \text{ and } \bar{k}_{22}^{(m)} = \left(Q_{23}^{(m)} - 1 \right) / r. \]

In the cases of pure axial compression, the traction conditions on the lateral surfaces are

\[\bar{\sigma}_{r}^{(N)}(\zeta = h/2) = 0 \text{ and } \bar{\sigma}_{r}^{(1)}(\zeta = -h/2) = 0. \] (8)

By means of Eq. (8), we can readily solve Eq. (7) for the functions of \(\bar{W}_{0}^{(m)}(\zeta) \) and \(\bar{\sigma}_{r 0}^{(m)}(\zeta) \) using the transfer matrix method combined with the SA one, the solution process of which can be found in Wu and Tsai (2011) and Wu and Jiang (2012), and is thus not repeated here, and the initial membrane stresses can then be obtained as follows:
Taking a free body diagram at each edge, we can express the force equilibrium equation in the axial direction in the following form,

$$\int_0^{2\pi} \int_{\zeta_0}^{\zeta_N} \bar{\sigma}_x(\zeta) \, r \, d\zeta \, d\theta = -P_x. \quad (9)$$

By satisfying Eq. (9), we subsequently obtain the expression of A_0 as follows:

$$A_0 = -S_x P_x, \quad (10)$$

in which

$$S_x = \left\{ 2\pi R \sum_{m=1}^{N_l} \int_{\zeta_{m-1}}^{\zeta_m} \left[\bar{Q}_{11}^{(m)} + \left(\bar{Q}_{12}^{(m)}/r \right) \bar{W}_0^{(m)} + \bar{Q}_{13}^{(m)} \bar{\sigma}_{r0}^{(m)} \right] \left[1 + (\zeta/R) \right] d\zeta \right\}^{-1}.$$

As a result, the initial in-surface and transverse normal stresses can be obtained as follows:

$$\bar{\sigma}_x^{(m)}(\zeta) = -f_x^{(m)}(\zeta) P_x, \quad \bar{\sigma}_\theta^{(m)}(\zeta) = -f_{\theta}^{(m)}(\zeta) P_x,$$

and

$$\bar{\sigma}_r^{(m)}(\zeta) = -f_r^{(m)}(\zeta) P_x, \quad (11)$$

in which $f_x^{(m)}$, $f_{\theta}^{(m)}$ and $f_r^{(m)}$ denote the influence functions of the initial in-surface and transverse stresses for the m^{th}-layer of the cylinder in the cases of pure axial compression, and $f_x^{(m)} = S_x \left[\bar{Q}_{11}^{(m)} + \left(\bar{Q}_{12}^{(m)}/r \right) \bar{W}_0^{(m)} + \bar{Q}_{13}^{(m)} \bar{\sigma}_{r0}^{(m)} \right]$, $f_{\theta}^{(m)} = S_x \left[\bar{Q}_{12}^{(m)} + \left(\bar{Q}_{22}^{(m)}/r \right) \bar{W}_0^{(m)} + \bar{Q}_{23}^{(m)} \bar{\sigma}_{r0}^{(m)} \right]$, and $f_r^{(m)} = S_x \bar{\sigma}_{r0}^{(m)}$. It is well known that the influence of transverse normal stress on the critical load parameters of multilayered FGM cylinders under axial compression is relatively minor, less than 0.1% in most general cases, and this effect is thus neglected in this analysis for brevity.

4 Perturbed state in a multilayered FGM cylinder

4.1 Reissner’s mixed variational theorem

As mentioned above, a set of membrane stresses exists in the cylinder just before instability occurs, and this is introduced in the Reissner energy functional of a multilayered FGM cylinder, in which the incremental stresses associated with the small incremental displacements perturbed from the state of neutral equilibrium will be considered.
The incremental stress-strain relations valid for the nature of the symmetry class of elastic materials are given by

\[
\begin{bmatrix}
\sigma_x^{(m)} \\
\sigma_{\theta}^{(m)} \\
\sigma_r^{(m)} \\
\tau_{\theta r}^{(m)} \\
\tau_x^{(m)} \\
\tau_{x \theta}^{(m)}
\end{bmatrix}
=
\begin{bmatrix}
c_{11}^{(m)} & c_{12}^{(m)} & c_{13}^{(m)} & 0 & 0 & 0 \\
c_{12}^{(m)} & c_{22}^{(m)} & c_{23}^{(m)} & 0 & 0 & 0 \\
c_{13}^{(m)} & c_{23}^{(m)} & c_{33}^{(m)} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44}^{(m)} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{55}^{(m)} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{66}^{(m)}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x^{(m)} \\
\varepsilon_{\theta}^{(m)} \\
\varepsilon_r^{(m)} \\
\gamma_{\theta r}^{(m)} \\
\gamma_{x}^{(m)} \\
\gamma_{x \theta}^{(m)}
\end{bmatrix},
\tag{12}
\]

where \(\sigma_x^{(m)}, \sigma_{\theta}^{(m)}, \ldots, \tau_x^{(m)} \) and \(\varepsilon_x^{(m)}, \varepsilon_{\theta}^{(m)}, \ldots, \gamma_{x \theta}^{(m)}\) are the incremental stress and strain components of a certain material point in the \(m^{th}\)-layer, respectively.

\(c_{ij}^{(m)} (i, j=1-6)\) are the elastic coefficients which are constants through the thickness coordinate in the homogeneous elastic layers, and are variable through the thickness coordinate in the FGM layers (i.e., \(c_{ij}^{(m)}(\zeta)\) or \(c_{ij}^{(m)}(z_m)\)).

The kinematic relations between the incremental strains and the incremental displacements are given by

\[
\begin{bmatrix}
\varepsilon_x^{(m)} \\
\varepsilon_{\theta}^{(m)} \\
\varepsilon_r^{(m)} \\
\gamma_{\theta r}^{(m)} \\
\gamma_{x}^{(m)} \\
\gamma_{x \theta}^{(m)}
\end{bmatrix}
=
\begin{bmatrix}
\frac{\partial}{\partial x} & 0 & 0 \\
0 & \frac{1}{r} \frac{\partial}{\partial \theta} & \frac{1}{r} \frac{\partial}{\partial r} \\
0 & 0 & \frac{\partial}{\partial r} \\
0 & (-1/r) + \frac{\partial}{\partial r} & (1/r) \frac{\partial}{\partial \theta} \\
(1/r) \frac{\partial}{\partial \theta} & 0 & \frac{\partial}{\partial x} \\
(1/r) \frac{\partial}{\partial \theta} & \frac{\partial}{\partial x} & 0
\end{bmatrix}
\begin{bmatrix}
u_x^{(m)} \\
u_{\theta}^{(m)} \\
u_r^{(m)} \\
u_{\theta r}^{(m)} \\
u_x^{(m)} \\
u_{x \theta}^{(m)}
\end{bmatrix},
\tag{13}
\]

where \(u_x^{(m)}, u_{\theta}^{(m)}\) and \(u_r^{(m)}\) denote the incremental elastic displacement components, \(\partial = \partial / \partial k\) \((k = x, \theta \text{ and } r)\).

The Reissner energy functional of the FGM cylinder under axial compression while in equilibrium in a displaced buckling mode is written in the form of
\[\Pi_R = \sum_{m=1}^{N_i} \int_{-h_m/2}^{h_m/2} \int_{\Omega} \left[\sigma_x^{(m)} \varepsilon_x^{(m)} + \sigma_{\theta}^{(m)} \varepsilon_{\theta}^{(m)} + \sigma_r^{(m)} \varepsilon_r^{(m)} + \tau_{\theta r}^{(m)} \gamma_{\theta r}^{(m)} + \tau_{r \theta}^{(m)} \gamma_{r \theta}^{(m)} - B(\sigma_{ij}^{(m)}) \right] r\,dx\,d\theta\,dz_m \\
- \sum_{m=1}^{N_i} \int_{-h_m/2}^{h_m/2} \int_{\Omega} \left(P_x^{(m)} \varepsilon_x^{(m)} + P_{\theta}^{(m)} \varepsilon_{\theta}^{(m)} \right) r\,dx\,d\theta\,dz_m \\
- \sum_{m=1}^{N_i} \int_{-h_m/2}^{h_m/2} \int_{\Gamma_{\sigma}} \bar{T}_i^{(m)} u_i^{(m)} d\Gamma\,dz_m \\
- \sum_{m=1}^{N_i} \int_{-h_m/2}^{h_m/2} \int_{\Gamma_u} T_i^{(m)} (u_i^{(m)} - \bar{u}_i^{(m)}) d\Gamma\,dz_m \] (14)

where \(\Omega \) denotes the cylinder domain on the \(x - \theta \) surface; \(\Gamma_{\sigma} \) and \(\Gamma_u \) denote the portions of the edge boundary, where the surface tractions \(\bar{T}_i^{(m)} \) (\(i = x, \theta \) and \(r \)) and surface displacements \(\bar{u}_i^{(m)} \) (\(i = x, \theta \) and \(r \)) perturbed from the state of neutral equilibrium are prescribed, respectively; \(B(\sigma_{ij}^{(m)}) \) is the complementary energy density function; \(\varepsilon_x^{(m)} \) and \(\varepsilon_{\theta}^{(m)} \) denote the second-order term of the Green-Lagrange in-surface normal strains, and are given by

\[\varepsilon_x^{(m)} = \left[\left(\frac{\partial u_x^{(m)}}{\partial x} \right)^2 + \left(\frac{\partial u_{\theta}^{(m)}}{\partial x} \right)^2 + \left(\frac{\partial u_r^{(m)}}{\partial x} \right)^2 \right] / 2, \] (15)

\[\varepsilon_{\theta}^{(m)} = \left[\left(\frac{\partial u_{\theta}^{(m)}}{\partial \theta} + \frac{\partial u_r^{(m)}}{\partial \theta} \right)^2 + \left(\frac{\partial u_r^{(m)}}{\partial \theta} - \frac{\partial u_{\theta}^{(m)}}{\partial \theta} \right)^2 + \left(\frac{\partial u_{\theta}^{(m)}}{\partial \theta} \right)^2 \right] / (2r^2). \] (16)

In this formulation, we take the incremental elastic displacement and incremental transverse stress components as the primary variables subject to variation, and the incremental in- and out-of-surface strain components and the incremental in-surface stress ones are the dependent variables, which can be expressed in terms of the primary variables using Eqs. (12) and (13) as follows:

\[\varepsilon_x^{(m)} = \frac{\partial B}{\partial \sigma_x^{(m)}} = u_x^{(m)}, \] (17)

\[\varepsilon_{\theta}^{(m)} = \frac{\partial B}{\partial \sigma_{\theta}^{(m)}} = (1/r) u_{\theta}^{(m)}, \] (18)

\[\varepsilon_r^{(m)} = \frac{\partial B}{\partial \sigma_r^{(m)}} = -Q_{13}^{(m)} u_x^{(m)} - \left(\frac{Q_{23}^{(m)}}{r} \right) u_{\theta}^{(m)} + \left(\frac{Q_{23}^{(m)}}{r} \right) u_r^{(m)}. \] (19)
A State Space Differential Reproducing Kernel Method

\[\gamma^{(m)}_{\alpha r} = \partial B / \partial \tau^{(m)}_{\alpha r} = \left(1/c^{(m)}_{55}\right) \tau^{(m)}_{\alpha r}, \]
(20)

\[\gamma^{(m)}_{\theta r} = \partial B / \partial \tau^{(m)}_{\theta r} = \left(1/c^{(m)}_{44}\right) \tau^{(m)}_{\theta r}, \]
(21)

\[\gamma^{(m)}_{\alpha \theta} = \partial B / \partial \tau^{(m)}_{\alpha \theta} = (1/r) u^{(m)}_{\theta} + u^{(m)}_{\alpha \theta}. \]
(22)

\[\sigma^{(m)}_p = Q^{(m)}_p B_1 u^{(m)} + Q^{(m)}_p B_2 u^{(m)} + Q^{(m)}_r \sigma^{(m)} \]
(23)

where \[\sigma^{(m)}_p = \{ \sigma^{(m)}_x, \sigma^{(m)}_{\theta}, \tau^{(m)}_{\alpha \theta} \}^T, \quad u^{(m)} = \{ u^{(m)}_x, u^{(m)}_\theta \}^T, \quad Q^{(m)}_p = \begin{bmatrix} Q^{(m)}_{11} & Q^{(m)}_{12} & 0 \\ Q^{(m)}_{12} & Q^{(m)}_{22} & 0 \\ 0 & 0 & Q^{(m)}_{66} \end{bmatrix}, \quad B_1 = \begin{bmatrix} \partial_x & 0 \\ 0 & r^{-1} \partial_{\theta} \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 \\ r^{-1} \\ 0 \end{bmatrix}, \quad Q^{(m)}_r = \begin{bmatrix} Q^{(m)}_{13} \\ Q^{(m)}_{23} \\ 0 \end{bmatrix}. \]

4.2 Euler-Lagrange equations

Substituting Eqs. (17)–(23) into Eq. (14) and imposing the stationary principle of the Reissner energy functional perturbed from the state of neutral equilibrium (i.e., \(\delta \Pi_R = 0 \)) yields

\[\delta \Pi_R = \sum_{m=1}^{N_l} \int_{h_{n_l}/2}^{h_{n_l}/2} \int_{\Omega} \left\{ r \sigma^{(m)}_x \delta u^{(m)}_x + \sigma^{(m)}_{\theta} \left(\delta u^{(m)}_\theta + \delta u^{(m)}_r \right) + \tau^{(m)}_{\alpha \theta} \left(\delta u^{(m)}_{\alpha \theta} + r \delta u^{(m)}_{\theta \alpha} \right) + r \sigma^{(m)}_r \delta u^{(m)}_r \right\} dx d\theta dz_m
+ \left\{ u^{(m)}_x \left(\delta u^{(m)}_{\theta x} \right) + \left(f^{(m)}_x / r \right) \left(\delta u^{(m)}_{\theta x} + \delta u^{(m)}_x \right) + \left(u^{(m)}_x - u^{(m)}_\theta \right) \left(\delta u^{(m)}_{\theta x} \right) \right\} dx d\theta dz_m
+ \left\{ u^{(m)}_{\theta} \left(\delta u^{(m)}_{\theta} \right) + \left(u^{(m)}_\theta + u^{(m)}_r \right) \left(\delta u^{(m)}_{\theta r} + \delta u^{(m)}_r \right) \right\} dx d\theta dz_m
- \sum_{m=1}^{N_l} \int_{h_{n_l}/2}^{h_{n_l}/2} \int_{\Gamma_1} \delta T^{(m)}_i \delta u^{(m)}_i d\Gamma dz_m - \sum_{m=1}^{N_l} \int_{h_{n_l}/2}^{h_{n_l}/2} \int_{\Gamma_2} \delta T^{(m)}_i \left(u^{(m)}_i - u^{(m)}_i \right) d\Gamma dz_m = 0 \]
where the derivatives of the suffix variables with respect to \(r \) are identical to those with respect to \(z_m \) (i.e., \(dr = dz_m \)).

Performing the integration by parts and using Green’s theorem, we obtain the Euler–Lagrange equations of 3D elasticity related to the buckling problem of an axially compressed FGM cylinder from the domain integral terms and the admissible boundary conditions from the boundary integral terms, which are written as follows:

The Euler–Lagrange equations are

\[
\delta u_{x}^{(m)} : \quad \tau_{x}^{(m)} ; z_m = -\sigma_{x}^{(m)} ; x - \left(\tau_{\theta}^{(m)} ; \theta / r \right) - \left(\tau_{x}^{(m)} / r \right) - P_x \left(f_x^{(m)} \right) \left(u_{x}^{(m)} ; xx \right) \\
- P_x \left(f_x^{(m)} \right) \left(u_{x}^{(m)} ; \theta / r^2 \right),
\]

\[(25)\]

\[
\delta u_{\theta}^{(m)} : \quad \tau_{\theta}^{(m)} ; z_m = -\sigma_{\theta}^{(m)} ; \theta - \left(\tau_{\theta}^{(m)} ; \theta / r \right) - 2 \left(\tau_{\theta}^{(m)} / r \right) - P_x \left(f_x^{(m)} \right) \left(u_{\theta}^{(m)} ; xx \right) \\
- P_x \left(f_x^{(m)} \right) \left(u_{\theta}^{(m)} ; \theta / r^2 \right),
\]

\[(26)\]

\[
\delta u_{r}^{(m)} : \quad \sigma_{r}^{(m)} ; z_m = -\tau_{x}^{(m)} ; x - \left(\sigma_{\theta}^{(m)} ; \theta / r \right) + \left(\sigma_{\theta}^{(m)} / r \right) - P_x \left(f_x^{(m)} \right) \left(u_{r}^{(m)} ; xx \right) \\
- P_x \left(f_x^{(m)} \right) \left(u_{r}^{(m)} ; \theta / r^2 \right),
\]

\[(27)\]

\[
\delta \tau_{x}^{(m)} : \quad u_{x}^{(m)} ; z_m = -u_{r}^{(m)} ; x + \left(\tau_{x}^{(m)} ; c_{55}^{(m)} \right),
\]

\[(28)\]

\[
\delta \tau_{\theta}^{(m)} : \quad u_{\theta}^{(m)} ; z_m = \left(\tau_{\theta}^{(m)} ; c_{44}^{(m)} \right) ; r - \left(\tau_{\theta}^{(m)} ; \theta / r \right) + \left(\tau_{\theta}^{(m)} / r \right),
\]

\[(29)\]

\[
\delta \sigma_{r}^{(m)} : \quad u_{r}^{(m)} ; z_m = -\left(c_{13}^{(m)} / c_{33}^{(m)} \right) u_{x}^{(m)} ; x - \left(c_{23}^{(m)} / c_{33}^{(m)} \right) \left(u_{\theta}^{(m)} ; \theta / r \right) \\
- \left(c_{23}^{(m)} / c_{33}^{(m)} \right) \left(u_{r}^{(m)} / r \right) + \left(\sigma_{r}^{(m)} ; c_{33}^{(m)} \right),
\]

\[(30)\]

where \(m = 1, 2, \ldots, N_l \).

The lateral boundary conditions are

\[
\left[\begin{array}{ccc}
\tau_{x}^{(N_l)} & \tau_{\theta}^{(N_l)} & \sigma_{r}^{(N_l)} \\
\end{array} \right] = \left[\begin{array}{ccc}
0 & 0 & 0 \\
\end{array} \right] \text{ on } z_{N_l} = h_{N_l} / 2 \ (\text{or } \zeta = h / 2),
\]

\[(31a)\]
\[
\begin{bmatrix}
\tau_{xr}^{(1)} & \tau_{\theta r}^{(1)} & \sigma_r^{(1)}
\end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \text{ on } z_1 = -h_1/2 \text{ (or } \zeta = -h/2); \tag{31b}
\]

The edge boundary conditions are
\[
\begin{align*}
\sigma_x^{(m)} n_1 + \tau_{x\theta}^{(m)} n_2 &= \vec{T}_x^{(m)} \text{ or } u_x^{(m)} = \vec{u}_x^{(m)}, \tag{32a} \\
\tau_{x\theta}^{(m)} n_1 + \sigma_{\theta}^{(m)} n_2 &= \vec{T}_{\theta}^{(m)} \text{ or } u_{\theta}^{(m)} = \vec{u}_{\theta}^{(m)}, \tag{32b} \\
\tau_{xr}^{(m)} n_1 + \tau_{\theta r}^{(m)} n_2 &= \vec{T}_r^{(m)} \text{ or } u_r^{(m)} = \vec{u}_r^{(m)}, \tag{32c}
\end{align*}
\]

where \(m = 1, 2, \ldots, N, \) and \(n_1 \) and \(n_2 \) stand for components of the unit normal vectors on the edges.

The set of Euler–Lagrange Equations (i.e., Eqs. (25)–(30)) associated with a set of appropriate boundary conditions (Eqs. (32a, b, c)) constitutes a well-posed boundary value problem, which is the so-called strong formulation of this problem. A state space DRK method will be developed for the buckling analysis of a simply-supported, multilayered FGM cylinder under axial compression later in this article on the basis of the strong formulation, in which the DRK interpolation functions [Wang et al. (2010)] will be used to construct the shape functions of each primary variable.

5 The state space DRK method

5.1 The single Fourier series expansion method

The single Fourier series expansion method is first applied to reduce this 3D problem to a 2D one. We thus express the primary variables of each individual layer in the following form

\[
u_x^{(m)}(x, \theta, \zeta) = \sum_{\hat{n}=0}^{\infty} u_1^{(m)}(x, z_m) \cos \hat{n} \theta, \tag{33}
\]

\[
u_{\theta}^{(m)}(x, \theta, \zeta) = \sum_{\hat{n}=0}^{\infty} u_2^{(m)}(x, z_m) \sin \hat{n} \theta, \tag{34}
\]

\[
u_r^{(m)}(x, \theta, \zeta) = \sum_{\hat{n}=0}^{\infty} u_3^{(m)}(x, z_m) \cos \hat{n} \theta, \tag{35}
\]

\[
\tau_{xr}^{(m)}(x, \theta, \zeta) = \sum_{\hat{n}=0}^{\infty} \tau_{13\hat{n}}^{(m)}(x, z_m) \cos \hat{n} \theta, \tag{36}
\]

\[
\tau_{\theta r}^{(m)}(x, \theta, \zeta) = \sum_{\hat{n}=0}^{\infty} \tau_{23\hat{n}}^{(m)}(x, z_m) \sin \hat{n} \theta, \tag{37}
\]
\[\sigma^{(m)}_r(x, \theta, \zeta) = \sum_{n=0}^{\infty} \sigma^{(m)}_{3\hat{n}}(x, z_m) \cos \hat{n}\theta, \] (38)

where \(m = 1, 2, \ldots, N_i \); \(\hat{n} \) denotes the wave number along the \(\theta \) coordinate, and is a positive integer or zero.

Similarly, the in-surface stresses can be expressed in terms of the primary variables as follows:

\[\sigma^{(m)}_x(x, \theta, \zeta) = \sum_{n=0}^{\infty} \sigma^{(m)}_{1\hat{n}}(x, z_m) \cos \hat{n}\theta, \] (39)

\[\sigma^{(m)}_{\theta}(x, \theta, \zeta) = \sum_{n=0}^{\infty} \sigma^{(m)}_{2\hat{n}}(x, z_m) \cos \hat{n}\theta, \] (40)

\[\tau^{(m)}_{x\theta}(x, \theta, \zeta) = \sum_{n=0}^{\infty} \tau^{(m)}_{12\hat{n}}(x, z_m) \sin \hat{n}\theta, \] (41)

where \(\sigma^{(m)}_{p\hat{n}} = Q_p^{(m)} B_{1\hat{n}} u^{(m)}_{1\hat{n}} + Q_p^{(m)} B_{2\hat{n}} u^{(m)}_{2\hat{n}} + Q_r^{(m)} \sigma^{(m)}_{3\hat{n}} \) in which \(\sigma^{(m)}_{p\hat{n}} = \begin{cases} \sigma^{(m)}_{1\hat{n}}, & \sigma^{(m)}_{2\hat{n}}, \tau^{(m)}_{12\hat{n}} \end{cases} \). \(\mathbf{u}^{(m)}_{\hat{n}} = \begin{bmatrix} u^{(m)}_{1\hat{n}} \\ u^{(m)}_{2\hat{n}} \end{bmatrix} \) and \(\mathbf{B}_{\hat{n}} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\hat{n}}{r} \end{bmatrix} \).

For brevity, the symbols of summation are omitted in the following derivation.

Substituting Eqs. (33)–(38) in the set of Euler-Lagrange equations given in Eqs. (25)–(30), we can obtain a series sets of state space equations governing the buckling of the FGM cylinder for various buckling modes, and they are given as follows:

For the buckling mode \((\hat{n}) \),

\[u^{(m)}_{1\hat{n}} = d_{14} \tau^{(m)}_{13\hat{n}} - u^{(m)}_{3\hat{n}} \times x, \] (42)

\[u^{(m)}_{2\hat{n}} = d_{22} u^{(m)}_{2\hat{n}} + d_{25} \tau^{(m)}_{23\hat{n}} + d_{26} u^{(m)}_{3\hat{n}}, \] (43)

\[\sigma^{(m)}_{3\hat{n}} = d_{31} u^{(m)}_{1\hat{n}} \times x + d_{32} u^{(m)}_{2\hat{n}} + d_{33} \sigma^{(m)}_{3\hat{n}} - \tau^{(m)}_{13\hat{n}} \times x - d_{36} \tau^{(m)}_{23\hat{n}} + d_{36} u^{(m)}_{3\hat{n}}, \] (44)

\[\tau^{(m)}_{13\hat{n}} = d_{41} u^{(m)}_{1\hat{n}} \times x + d_{42} u^{(m)}_{2\hat{n}} + d_{43} \sigma^{(m)}_{3\hat{n}} \times x + d_{44} \tau^{(m)}_{13\hat{n}}, \] (45)

\[\tau^{(m)}_{23\hat{n}} = -d_{41} u^{(m)}_{1\hat{n}} \times x + d_{52} u^{(m)}_{2\hat{n}} \times x + d_{52} u^{(m)}_{2\hat{n}} + d_{53} \sigma^{(m)}_{3\hat{n}} + d_{55} \tau^{(m)}_{23\hat{n}}, \] (46)
where
\[d_{14}^{(m)} = 1, \quad d_{22}^{(m)} = 1, \quad d_{25}^{(m)} = 1, \quad d_{26}^{(m)} = \bar{n} r^{-1}, \quad d_{31}^{(m)} = \bar{Q}^{(m)}_{12} / r, \]
\[d_{32}^{(m)} = \bar{n} Q^{(m)}_{22} / r^2, \quad d_{33}^{(m)} = \left(Q^{(m)}_{23} - 1 \right) / r, \quad d_{36}^{(m)} = \bar{Q}^{(m)}_{22} / r^2, \quad d_{341}^{(m)} = \bar{Q}^{(m)}_{11}, \]
\[d_{41}^{(m)} = \bar{n}^2 Q^{(m)}_{66} / r^2, \quad d_{42}^{(m)} = -\bar{n} (Q^{(m)}_{12} + Q^{(m)}_{66}) / r, \quad d_{43}^{(m)} = -\bar{Q}^{(m)}_{13}, \quad d_{44}^{(m)} = -1 / r, \]
\[d_{46}^{(m)} = -\bar{Q}^{(m)}_{12} / r, \quad d_{52}^{(m)} = -\bar{Q}^{(m)}_{66}, \quad d_{52}^{(m)} = \bar{n}^2 Q^{(m)}_{22} / r^2, \quad d_{53}^{(m)} = \bar{n} Q^{(m)}_{23} / r, \]
\[d_{55}^{(m)} = -2 / r, \quad d_{65}^{(m)} = \bar{n} Q^{(m)}_{22} / r^2, \quad d_{63}^{(m)} = 1 / c_{33}, \quad d_{66}^{(m)} = -\bar{Q}^{(m)}_{23} / r, \]
\[d_{1}^{(m)} = -2 \bar{n} / r^2, \quad d_{2}^{(m)} = -\left(\bar{n}^2 + 1 \right) / r^2, \quad d_{3}^{(m)} = -\bar{n}^2 / r^2. \]

The edge boundary conditions of the cylinders are considered as fully simply-supported and are written as follows:
\[u_{2h}^{(m)} = u_{3h}^{(m)} = \sigma_{1h}^{(m)} = 0 \text{ at } x = 0 \text{ and } L, \]
where \(m = 1, 2, \ldots, N_l. \)

5.2 The DRK interpolation

In this article, the DRK interpolation functions (Wang et al., 2010) are used to construct the shape functions of the primary field variables of this problem, and the DRK interpolation functions and their relevant derivatives are briefly described, as follows.

It is assumed that there are \(n_p \) discrete nodes randomly selected and located at \(x = x_{1}, x_{2}, \ldots, x_{n_p} \), respectively, in the x direction of the \(n^{th} \)-layer, in which a function \(F(x, z_m) \) is interpolated as \(F^a(x, z_m) \) and defined as
\[
F^a(x, z_m) = \sum_{l=1}^{n_p} \psi_l(x) F_l(z_m) \]
\[
= \sum_{l=1}^{n_p} \left[\tilde{\phi}_l(x) + \hat{\phi}_l(x) \right] F_l(z_m)
\]

where \(\tilde{\phi}_l(x) \) (\(l=1, 2, \ldots, n_p \)) denote the enrichment functions, which are determined by imposing the \(n^{th} \)-order reproducing conditions and are given by \(\tilde{\phi}_l(x) = w_0(x - x_i) P^l(x - x_i) \tilde{b}(x) \), in which \(P^l(x - x_i) = \left[1 \ (x - x_i) \ (x - x_i)^2 \cdots \ (x - x_i)^n \right] \), \(n \) is the highest order of the basis functions, \(\tilde{b}(x) \) is the undetermined function vector,
and \(w_a(x - x_i) \) is the weight function centered at the node, \(x = x_i \), with a support size \(a \); \(\phi_l(x) \) \((l=1, 2, \ldots, n_p)\) denote the primitive functions, which are used to introduce the Kronecker delta properties; \(\psi_l(x) \) is the shape function of \(F^a(x, z_m) \) at the sampling node, \(x = x_i \); and \(F_l(z_m) \) is the nodal function of \(F^a(x, z_m) \) at \(x = x_i \).

By selecting the complete \(n^{th} \)-order polynomials as the basis functions to be reproduced, we obtain a set of reproducing conditions to determine the undetermined functions of \(\bar{b}_i(x) \) \((i = 1, 2, \ldots, n+1)\) in Eq. (49). These conditions are given as

\[
\sum_{l=1}^{n_p} [\phi_l(x) + \hat{\phi}_l(x)] x'_r = x', \quad r \leq n. \tag{50}
\]

Equation (50) represents \((n+1)\) reproducing conditions, and the matrix form of these is given as

\[
\sum_{l=1}^{n_p} P(x - x_i) \phi_l(x) = \sum_{l=1}^{n_p} P(x - x_i) w_a(x - x_i) P^T(x - x_i) \bar{b}(x) = P(0) - \sum_{l=1}^{n_p} P(x - x_i) \hat{\phi}_l(x), \tag{51}
\]

where \(P(0) = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix}^T \).

According to these conditions, we may obtain the undetermined function vector \(\bar{b}(x) \) in the following form

\[
\bar{b}(x) = A^{-1}(x) \begin{bmatrix} P(0) - \sum_{l=1}^{n_p} P(x - x_i) \hat{\phi}_l(x) \end{bmatrix}, \tag{52}
\]

where \(A(x) = \sum_{l=1}^{n_p} P(x - x_i) w_a(x - x_i) P^T(x - x_i) \).

Substituting Eq. (52) into Eq. (49) yields the shape functions of \(F^a(x, z_m) \) in the form of

\[
\psi_l(x) = \tilde{\phi}_l(x) + \hat{\phi}_l(x) \quad (i = 1, 2, \ldots, n_p), \tag{53}
\]

where \(\tilde{\phi}_l(x) = w_a(x - x_i) P^T(x - x_i) A^{-1}(x) \begin{bmatrix} P(0) - \sum_{l=1}^{n_p} P(x - x_i) \hat{\phi}_l(x) \end{bmatrix} \).

It is noted that if we select a set of primitive functions satisfying the Kronecker delta properties (i.e., \(\phi_l(x_k) = \delta_{lk} \)); a priori, then a set of the shape functions with these properties will be obtained (i.e., \(\psi_l(x_k) = \delta_{lk} \)), due to the fact that the enrichment functions vanish at all the nodes (i.e., \(\hat{\phi}_l(x_k) = 0 \)). In this article, a quartic spline function with its support size not covering any neighboring nodes, as suggested by Wang et al. (2010), is assigned to be the primitive function for each sampling node.
node. Moreover, the derivatives of these DRK interpolation functions are given in Appendix A.

In implementing the present scheme, the weight and primitive functions (i.e., \(w(s) \) and \(\hat{\phi}(s) \)) must be selected in advance. Following Wang et al. (2010), the normalized Gaussian function is selected as the weight function at each sampling node, and this is given as

\[
 w(s) = \begin{cases}
 \frac{e^{-(s/a)^2} - e^{-(1/a)^2}}{1 - e^{-(1/a)^2}} & \text{for } s \leq 1 \\
 0 & \text{for } s > 1
 \end{cases},
\]

where \(w_a(x - x_l) = w(s) \), \(s = |x - x_l|/a \), and \(a \) denotes the radius of the influence zone. The literature [Wang et al. (2010)] suggests an optimal value 0.3 for \(\alpha \) for the analysis of elastic solids, and this is also used in this article.

The quartic spline function is selected as the primitive function at each sampling node, and given as

\[
 \hat{\phi}(s) = \begin{cases}
 -3s^4 + 8s^3 - 6s^2 + 1 & \text{for } s \leq 1 \\
 0 & \text{for } s > 1
 \end{cases},
\]

5.3 The meshless collocation method

Substituting Eqs. (49), (A.1) and (A.6) in the strong formulation of this 3D buckling problem, which consists of the Euler-Lagrange Eqs. (42)–(47) associated with the appropriate boundary conditions in Eqs. (48), we obtain the following sets of ordinary differential equations:

Satisfying the edge conditions given in Eq. (48) yields

\[
\left(u_{2n}^{(m)} \right)_1 = \left(u_{3n}^{(m)} \right)_1 = 0, \quad \text{and} \quad \left(\sigma_{3n}^{(m)} \right)_1 = -\left(Q_{11}^{(m)} / Q_{13}^{(m)} \right) \sum_{j=1}^{n_p} \left[\psi_{j}^{(1)}(x_{1j}) \right] \left(u_{1n}^{(m)} \right)_j,
\]

\[
\left(u_{2n}^{(m)} \right)_{np} = \left(u_{3n}^{(m)} \right)_{np} = 0, \quad \text{and} \quad \left(\sigma_{3n}^{(m)} \right)_{np} = -\left(Q_{11}^{(m)} / Q_{13}^{(m)} \right) \sum_{j=1}^{n_p} \left[\psi_{j}^{(1)}(x_{np}) \right] \left(u_{1n}^{(m)} \right)_j.
\]

Using Eqs. (56a) and (56b), we rewrite the Euler-Lagrange equations as follows:

\[
\left(u_{1n}^{(m)} \right)_{i} = d_{14}^{(m)} \left(\tau_{13n}^{(m)} \right)_i - \sum_{j=2}^{(n_p-1)} \left[\psi_{j}^{(1)}(x_{i}) \right] \left(u_{3n}^{(m)} \right)_j \quad (i = 1, 2, \cdots, n_p),
\]
\[
\begin{align*}
(u^{(m)}_{2\hat{n}})^i_{z_m} &= d^{(m)}_{22} \left(u^{(m)}_{2\hat{n}} \right)^i_{z_m} + d^{(m)}_{25} \left(u^{(m)}_{23\hat{n}} \right)^i_{z_m} + d^{(m)}_{26} \left(u^{(m)}_{3\hat{n}} \right)^i_{z_m} \\
& \quad \text{for } i = 2, 3, \ldots, (n_p - 1), \tag{58}
\end{align*}
\]

\[
\begin{align*}
\left(\sigma^{(m)}_{3\hat{n}} \right)^i_{z_m} &= d^{(m)}_{31} \sum_{j=1}^{n_p} \left[\psi_j^{(1)}(x_i) \right] \left(u^{(m)}_{1\hat{n}} \right)^j_{z_m} + d^{(m)}_{32} \left(u^{(m)}_{2\hat{n}} \right)^i_{z_m} + d^{(m)}_{33} \left(\sigma^{(m)}_{3\hat{n}} \right)^i_{z_m} \\
& \quad - \sum_{j=1}^{n_p} \left[\psi_j^{(1)}(x_i) \right] \left(\tau^{(m)}_{13\hat{n}} \right)^j_{z_m} - d^{(m)}_{26} \left(\tau^{(m)}_{23\hat{n}} \right)^i_{z_m} \\
& \quad + d^{(m)}_{36} \left(u^{(m)}_{3\hat{n}} \right)^i_{z_m} - P_x d^{(m)}_1 f_\theta \left(u^{(m)}_{2\hat{n}} \right)^i_{z_m} \\
& \quad - P_x f_x^{(m)} \sum_{j=2}^{n_p} \left[\psi_j^{(2)}(x_i) \right] \left(u^{(m)}_{3\hat{n}} \right)^j_{z_m} - P_x d^{(m)}_2 f_\theta \left(u^{(m)}_{3\hat{n}} \right)^i_{z_m} \\
& \quad \text{for } i = 2, 3, \ldots, (n_p - 1), \tag{59}
\end{align*}
\]

\[
\begin{align*}
\left(\tau^{(m)}_{13\hat{n}} \right)^i_{z_m} &= d^{(m)}_{41} \sum_{j=1}^{n_p} \left[\psi_j^{(2)}(x_i) \right] \left(u^{(m)}_{1\hat{n}} \right)^j_{z_m} + d^{(m)}_{42} \left(u^{(m)}_{2\hat{n}} \right)^i_{z_m} \\
& \quad + d^{(m)}_{43} \sum_{j=2}^{n_p} \left[\psi_j^{(1)}(x_i) \right] \left(\sigma^{(m)}_{3\hat{n}} \right)^j_{z_m} \\
& \quad + \psi_1^{(1)}(x_i) Q_{11}^{(m)} \sum_{j=1}^{n_p} \left[\psi_j^{(1)}(x_1) \right] \left(u^{(m)}_{1\hat{n}} \right)^j_{z_m} \\
& \quad + \psi_{n_p}^{(1)}(x_i) Q_{11}^{(m)} \sum_{j=1}^{n_p} \left[\psi_j^{(1)}(x_{n_p}) \right] \left(u^{(m)}_{1\hat{n}} \right)^j_{z_m} + d^{(m)}_{44} \left(\tau^{(m)}_{13\hat{n}} \right)^i_{z_m} \\
& \quad + d^{(m)}_{46} \sum_{j=2}^{n_p} \left[\psi_j^{(1)}(x_i) \right] \left(u^{(m)}_{3\hat{n}} \right)^j_{z_m} - P_x f_x^{(m)} \sum_{j=1}^{n_p} \left[\psi_j^{(2)}(x_i) \right] \left(u^{(m)}_{1\hat{n}} \right)^j_{z_m} \\
& \quad - P_x d^{(m)}_3 f_\theta \left(u^{(m)}_{1\hat{n}} \right)^i_{z_m} \\
& \quad \text{for } i = 1, 2, \ldots, n_p, \tag{60}
\end{align*}
\]
in which the system consists of \((6n_p - 6)\) simultaneously linear ordinary differential equations in terms of \((6n_p - 6)\) primary variables. These state space equations are rewritten in the matrix form as follows:

\[
\frac{d\mathbf{F}^{(m)}}{dz_m} = \mathbf{K}^{(m)} \mathbf{F}^{(m)} \quad m = 1, 2, \cdots, N_l,
\]

in which \(\mathbf{F}^{(m)}\) and \(\mathbf{K}^{(m)}\) denote the state space variables and the corresponding
The coefficient matrix of the \(m^{th}\)-layer of the cylinder, respectively, and
\[
\mathbf{F}^{(m)} = \begin{pmatrix}
\left(u_{1n}^{(m)}\right)_{1} & \cdots & \left(u_{1n}^{(m)}\right)_{p} & \cdots & \left(u_{1n}^{(m)}\right)_{n_p-1} \\
\left(u_{2n}^{(m)}\right)_{1} & \cdots & \left(u_{2n}^{(m)}\right)_{p} & \cdots & \left(u_{2n}^{(m)}\right)_{n_p-1} \\
\left(u_{3n}^{(m)}\right)_{1} & \cdots & \left(u_{3n}^{(m)}\right)_{p} & \cdots & \left(u_{3n}^{(m)}\right)_{n_p-1} \\
& \vdots & \ddots & \vdots & \ddots \\
\left(u_{(n_p+1)n}^{(m)}\right)_{1} & \cdots & \left(u_{(n_p+1)n}^{(m)}\right)_{p} & \cdots & \left(u_{(n_p+1)n}^{(m)}\right)_{n_p-1}
\end{pmatrix}
\]

5.4 Theories of homogeneous linear systems

The general solution of Eq. (63) is
\[
\mathbf{F}^{(m)}(z_m) = \mathbf{\Omega}^{(m)}(z_m)\mathbf{L}^{(m)}, \tag{64}
\]
where \(\mathbf{L}^{(m)}\) is a \((6n_p - 6)\times1\) matrix of arbitrary constants; \(\mathbf{\Omega}^{(m)}\) is the fundamental matrix of Eq. (63), and is formed by linearly independent solutions in the form of
\[
\mathbf{\Omega}^{(m)} = \left[\mathbf{\Omega}_1^{(m)}, \mathbf{\Omega}_2^{(m)}, \ldots, \mathbf{\Omega}_{(6n_p-6)}^{(m)}\right]. \mathbf{\Omega}_i^{(m)} = \Lambda_i e^{\hat{\lambda}_i z_m} (i = 1, 2, \ldots, (6n_p - 6))
\]
in which \(\lambda_i\) and \(\Lambda_i\) are the eigenvalues and their corresponding eigenvectors of the coefficient matrix \(\mathbf{K}^{(m)}\) in Eq. (63), respectively.

If the coefficient matrix \(\mathbf{K}^{(m)}\) has a complex eigenvalue \(\lambda_1\) (i.e., \(\lambda_1 = \text{Re}(\lambda_1) + i\text{Im}(\lambda_1)\)), then its complex conjugate \(\lambda_2\) (i.e., \(\lambda_2 = \text{Re}(\lambda_1) - i\text{Im}(\lambda_1)\)) is also an eigenvalue of \(\mathbf{K}^{(m)}\) due to the fact that all of the coefficients of \(\mathbf{K}^{(m)}\) are real. In addition, \(\Lambda_{1,2} = \text{Re}(\Lambda_1) \pm i\text{Im}(\Lambda_1)\) are the corresponding eigenvectors of the complex conjugate pair \(\lambda_{1,2}\). In order to achieve more efficient computational performance, we replace the complex-valued solutions with another two linearly independent real-valued solutions using Euler’s formula, and they are given by
\[
\mathbf{\Omega}_1^{(m)} = e^{\text{Re}(\lambda_1)z_m} \left[\text{Re}(\Lambda_1) \cos(\text{Im}(\lambda_1)z_m) - \text{Im}(\Lambda_1) \sin(\text{Im}(\lambda_1)z_m)\right], \tag{65a}
\]
\[
\mathbf{\Omega}_2^{(m)} = e^{\text{Re}(\lambda_1)z_m} \left[\text{Re}(\Lambda_1) \sin(\text{Im}(\lambda_1)z_m) + \text{Im}(\Lambda_1) \cos(\text{Im}(\lambda_1)z_m)\right]. \tag{65b}
\]

On the basis of the previous set of linearly independent real-valued solutions, a transfer matrix method combined with an SA one can be developed for the analysis of FGM circular hollow cylinders, where each FGM layer of the sandwich cylinder is artificially divided into a finite number of individual layers with an equal and small thickness for each layer, compared with the mid-surface radius, as well as with constant material properties, determined in an average thickness sense. The exact solutions of the assorted field variables induced in the FGM cylinder with various edge conditions can thus be gradually approached by increasing the number of individual layers. It is noted that this solution process can be performed layer-by-layer, and the computational performance is independent of the total number of individual layers. Consequently, the implementation of the present approach is much less time-consuming than usual.
5.5 The transfer matrix method

A transfer matrix method for the 3D analysis of simply-supported, multilayered FGM cylinders is developed as follows, in which the FGM cylinder is artificially divided into an N_l-layered cylinder with an equal and small thickness compared with the mid-surface radius of the cylinder. According to Eq. (64), we may obtain the general solution for the state space equations of the m^{th}-layer ($m = 1, 2, \cdots, N_l$).

When $z_m = -h_m/2$, we thus obtain

$$L^{(m)} = \left[\Omega^{(m)}(-h_m/2)\right]^{-1} F_{(m-1)},$$

(66)

where $F_{(m-1)}$ denotes the vector of state space variables at the interface between the $(m-1)^{th}$- and m^{th}-layers, and $F_{(m-1)} = F^{(m)}(z_m = -h_m/2)$.

Using Eqs. (64) and (66), we obtain

$$F^{(m)} = R^{(m)} F^{(m-1)},$$

(67)

where $R^{(m)} = \Omega^{(m)}(z_m) \left[\Omega^{(m)}(-h_m/2)\right]^{-1}$.

By analogy, the vectors of state space variables between the top and bottom surfaces of the cylinder (i.e., $F_{(N_l)}$ and $F_{(0)}$) are linked by

$$F_{(N_l)} = R_{(N_l)} F_{(N_l-1)}$$

$$= \left(\prod_{m=1}^{N_l} R^{(m)}\right) F_{(0)},$$

(68)

where $\prod_{m=1}^{N_l} R^{(m)} = R_{(N_l)} R_{(N_l-1)} \cdots R_{(2)} R_{(1)}$.

Equation (68) represents the sets of $(6n_p - 6)$ simultaneous algebraic equations. Imposing the traction free conditions on the lateral surfaces, we may rewrite it as

$$\begin{bmatrix} \mathbf{u}_u \\ \mathbf{u}_b \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{I I} & \mathbf{R}_{I I I} \\ \mathbf{R}_{I I I} & \mathbf{R}_{I I I} \end{bmatrix} \begin{bmatrix} \mathbf{u}_u \\ \mathbf{u}_b \end{bmatrix},$$

(69)

where \mathbf{u}_u and \mathbf{u}_b denote the nodal displacement components on the upper and bottom surfaces, respectively, $\mathbf{\sigma}_u$ and $\mathbf{\sigma}_b$ the nodal transverse stress components on the upper and bottom surfaces, respectively and they are given as follows:

$$\mathbf{u}_u = \left\{ \left(u^{(N_l)}_1 (\zeta = 0.5h) \right)_{n_p}, \left(u^{(N_l)}_1 (\zeta = 0.5h) \right)_{n_p-1}, \cdots, \left(u^{(N_l)}_2 (\zeta = 0.5h) \right)_{n_p}, \left(u^{(N_l)}_2 (\zeta = 0.5h) \right)_{n_p-1}, \cdots, \left(u^{(N_l)}_3 (\zeta = 0.5h) \right)_{n_p}, \left(u^{(N_l)}_3 (\zeta = 0.5h) \right)_{n_p-1} \right\}^T.$$
Because Eq. (71) yields an implicit, rather than explicit, function of A where with a square coefficient matrix, we obtain
\[
\begin{bmatrix}
(u_1^{(1)} (\xi = -0.5h))_1, \cdots, (u_1^{(1)} (\xi = -0.5h))_{n_p}, (u_2^{(1)} (\xi = -0.5h))_2, \cdots, \\
(u_2^{(1)} (\xi = -0.5h))_{n_p-1}, (u_3^{(1)} (\xi = -0.5h))_2, \cdots, (u_3^{(1)} (\xi = -0.5h))_{n_p-1}
\end{bmatrix}^T
\]

\[
\sigma_u = \begin{bmatrix}
(\tau_{13}^{(N_1)} (\xi = 0.5h))_1, \cdots, (\tau_{13}^{(N_1)} (\xi = 0.5h))_{n_p}, (\tau_{23}^{(N_1)} (\xi = 0.5h))_1, \cdots, \\
(\tau_{23}^{(N_1)} (\xi = 0.5h))_{n_p}, (\sigma_3^{(N_1)} (\xi = 0.5h))_2, \cdots, (\sigma_3^{(N_1)} (\xi = 0.5h))_{n_p-1}
\end{bmatrix}^T
\]

\[
\sigma_h = \begin{bmatrix}
(\tau_{13}^{(1)} (\xi = -0.5h))_1, \cdots, (\tau_{13}^{(1)} (\xi = -0.5h))_{n_p}, (\tau_{23}^{(1)} (\xi = -0.5h))_1, \cdots, \\
(\tau_{23}^{(1)} (\xi = -0.5h))_{n_p}, (\sigma_3^{(1)} (\xi = -0.5h))_2, \cdots, (\sigma_3^{(1)} (\xi = -0.5h))_{n_p-1}
\end{bmatrix}^T
\]

Imposing the traction free conditions on the lateral surfaces, which are $\sigma_u = 0$ and $\sigma_h = 0$, and using the least square method to form a system of algebraic equations with a square coefficient matrix, we obtain

\[
A^T \mathbf{u}_u = 0,
\]

(70)

where $A = R_{111} (R_{111})^{-1}$.

A nontrivial solution of Eq. (69) exists if the determinant of the coefficient matrix $(A^T A)$ vanishes. Hence, the critical load can be obtained by

\[
|A^T A| = 0.
\]

(71)

Because Eq. (71) yields an implicit, rather than explicit, function of $(P_x)_{cr}$, a bisection method is used to determine the roots of Eq. (71) with a fixed value of \hat{n}.

6 Illustrative Examples

6.1 Laminated FRC cylinders

Based on the theory 3D elasticity, Noor and Peters (1989) and Ye and Soldatos (1995) presented the exact 3D solutions for the critical loads of simply-supported, [$0^\circ / 90^\circ$]$_{20}$ laminated circular hollow cylinders under axial compression, and these benchmark solutions are used to validate the accuracy and convergence of the ones obtained using the state space DRK method in Table 1, in which the fibers of the different layers alternate between the circumferential and longitudinal directions, with the fibers of the top and bottom layers running in the circumferential and longitudinal directions, respectively; the geometric parameters of the cylinders are $L/R = 5$ and $h/R = 0.2$; the material properties of the cylinders are given as

\[
E_L/E_T = 15, \quad G_{LT}/E_T = 0.5, \quad G_{TT}/E_T = 0.35 \quad \text{and} \quad \nu_{LL} = \nu_{LT} = 0.3
\]

(72a-d)
where the subscripts of L and T denote the directions parallel and transverse to the fiber directions, respectively.

Table 1: Convergence studies for the state space DRK solutions of the critical load parameters of simply-supported, laminated $[0^\circ/90^\circ]_{20}$ cylinders under axial compression ($\bar{P}_x = (P_x)_{cr}R^2/(2\pi RE_T h^3)$).

<table>
<thead>
<tr>
<th>n</th>
<th>a</th>
<th>Theories</th>
<th>n_p</th>
<th>$\hat{n} = 1$</th>
<th>$\hat{n} = 2$</th>
<th>$\hat{n} = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.1Δx</td>
<td>Present</td>
<td>19</td>
<td>5.5123</td>
<td>5.0301</td>
<td>6.7959</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>5.5123</td>
<td>5.0317</td>
<td>6.8572</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>5.5123</td>
<td>5.0365</td>
<td>7.0068</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>5.5123</td>
<td>5.0365</td>
<td>7.1230</td>
</tr>
<tr>
<td>3</td>
<td>3.6Δx</td>
<td>Present</td>
<td>19</td>
<td>5.5203</td>
<td>4.9481</td>
<td>6.1100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>5.5203</td>
<td>4.9823</td>
<td>6.2325</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>5.5203</td>
<td>4.9863</td>
<td>6.5174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>5.5203</td>
<td>4.9887</td>
<td>6.6925</td>
</tr>
<tr>
<td>4</td>
<td>4.1Δx</td>
<td>Present</td>
<td>19</td>
<td>5.5115</td>
<td>5.0349</td>
<td>6.9201</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>5.5115</td>
<td>5.0277</td>
<td>6.9774</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>5.5115</td>
<td>5.0293</td>
<td>6.9169</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>5.5115</td>
<td>5.0293</td>
<td>7.0187</td>
</tr>
<tr>
<td>4</td>
<td>4.6Δx</td>
<td>Present</td>
<td>19</td>
<td>5.5147</td>
<td>5.0094</td>
<td>6.7967</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>5.5147</td>
<td>5.0309</td>
<td>6.8644</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>5.5147</td>
<td>5.0352</td>
<td>6.9917</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>5.5147</td>
<td>5.0352</td>
<td>6.9232</td>
</tr>
<tr>
<td>ED2 (D’Ottavio and Carrera, 2010)</td>
<td></td>
<td>5.512</td>
<td>5.187</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED4 (D’Ottavio and Carrera, 2010)</td>
<td></td>
<td>5.511</td>
<td>5.073</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMZ4 (D’Ottavio and Carrera, 2010)</td>
<td></td>
<td>5.511</td>
<td>5.056</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM4 (D’Ottavio and Carrera, 2010)</td>
<td></td>
<td>5.511</td>
<td>5.052</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D elasticity (Noor and Peters, 1989)</td>
<td></td>
<td>5.511</td>
<td>5.052</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D elasticity (Ye and Soldatos, 1995)</td>
<td></td>
<td>5.520</td>
<td>5.051</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td></td>
<td>5.512</td>
<td>5.042</td>
<td>7.129</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For comparison purposes, the critical load parameter, $(\bar{P}_x)_{cr}$, is defined as

$$(\bar{P}_x)_{cr} = (P_x)_{cr}R^2/(2\pi RE_T h^3).$$

Table 1 shows the convergence studies for the state space DRK solutions of the critical load parameters of simply-supported, $[0^\circ/90^\circ]_{20}$ laminated cylinders under axial compression for different buckling modes, $\hat{n} = 1 - 3$, in which the highest order of base functions (n) is taken to be $n=3$ and 4, the uniform distribution of nodes (n_p) is $n_p=19$, 21, 25 and 29, and the radius of the influence zone for each
Table 2: The state space DRK solutions of the critical load parameters of simply-supported, laminated cylinders under axial compression (\(n = 3 \), \(L/R = 0.2 \), \(R/t = 1/10 \), \(\phi = 0.01 \)).

<table>
<thead>
<tr>
<th>Theories</th>
<th>(E_l/E_t)</th>
<th>(N_l = 4)</th>
<th>(N_l = 8)</th>
<th>(N_l = 16)</th>
<th>(N_l = 32)</th>
<th>(N_l = 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSYS (16x30x16)</td>
<td>3.4355</td>
<td>3.4355</td>
<td>3.4355</td>
<td>3.4355</td>
<td>3.4355</td>
<td>3.4355</td>
</tr>
<tr>
<td>ANSYS (8x25x16)</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
</tr>
<tr>
<td>ANSYS (4x12x16)</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
</tr>
<tr>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>3.4355</td>
<td>3.4355</td>
<td>3.4355</td>
<td>3.4355</td>
<td>3.4355</td>
<td>3.4355</td>
</tr>
<tr>
<td>ANSYS (4x12x32)</td>
<td>3.9368</td>
<td>3.9368</td>
<td>3.9368</td>
<td>3.9368</td>
<td>3.9368</td>
<td>3.9368</td>
</tr>
<tr>
<td>ANSYS (8x25x32)</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
</tr>
<tr>
<td>ANSYS (16x50x32)</td>
<td>4.0518</td>
<td>4.0518</td>
<td>4.0518</td>
<td>4.0518</td>
<td>4.0518</td>
<td>4.0518</td>
</tr>
<tr>
<td>ANSYS (8x25x16)</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
</tr>
<tr>
<td>ED2 (D'Ottavio and Carrera, 2010)</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
</tr>
<tr>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>7.4564</td>
<td>7.4564</td>
<td>7.4564</td>
<td>7.4564</td>
<td>7.4564</td>
<td>7.4564</td>
</tr>
<tr>
<td>ANSYS (4x12x16)</td>
<td>3.443</td>
<td>3.443</td>
<td>3.443</td>
<td>3.443</td>
<td>3.443</td>
<td>3.443</td>
</tr>
<tr>
<td>ANSYS (8x25x16)</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
</tr>
<tr>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
</tr>
<tr>
<td>LM4 (D'Ottavio and Carrera, 2010)</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
</tr>
<tr>
<td>ANSYS (8x25x32)</td>
<td>7.4564</td>
<td>7.4564</td>
<td>7.4564</td>
<td>7.4564</td>
<td>7.4564</td>
<td>7.4564</td>
</tr>
<tr>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
</tr>
<tr>
<td>LM4 (D'Ottavio and Carrera, 2010)</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
</tr>
<tr>
<td>ANSYS (8x25x16)</td>
<td>3.443</td>
<td>3.443</td>
<td>3.443</td>
<td>3.443</td>
<td>3.443</td>
<td>3.443</td>
</tr>
<tr>
<td>ANSYS (8x25x32)</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
<td>4.0457</td>
</tr>
<tr>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
<td>4.3831</td>
</tr>
<tr>
<td>LM4 (D'Ottavio and Carrera, 2010)</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
<td>5.6691</td>
</tr>
</tbody>
</table>
sampling node \((a)\) is \(a = 3.1\Delta x\) and \(3.6\Delta x\) when \(n=3\), and \(a = 4.1\Delta x\) and \(4.6\Delta x\) when \(n=4\), while \(\Delta x = L/(n_p - 1)\). It can be seen from Table 1 that the solutions are slightly affected by changing the radius of the influence zone, and the solutions converge at \(n_p=19, 25\) and \(29\) for the buckling modes of \(\hat{\text{n}} = 1, 2\) and \(3\), respectively. The convergent solutions are obtained when both \(n=3, a = 3.1\Delta x\) and \(n=4, a = 4.1\Delta x\) are used, and these are in excellent agreement with the 3D elasticity solutions [Noor and Peters (1989); Ye and Soldatos (1995)] and the ones obtained using the modified Pagano method. These convergent solutions of the state space DRK method are also compared with the solutions obtained using the equivalent single-layered theories with second- and fourth-order displacement models (i.e., ED2 and ED4), those using with fourth-order mixed models combined with a zig-zag function (EMZ4), and those using layerwise theories with the fourth-order mixed models (LM4), and these are shown to be closely agree with the solutions obtained using LM4 and EMZ4. In addition, results show that the performance among the above-mentioned 2D and approximate 3D theories available in the literature is \(\text{LM4} > \text{EMZ4} > \text{ED4} > \text{ED2}\), in which the symbol “>” means more accurate and a faster convergence rate.

Table 2 shows the state space DRK solutions for the critical load parameters of axially loaded, \([0°/90°]_s\) and \([0°/90°/0°/90°]_s\) laminated cylinders with fully simply supported edges, in which the material properties, geometrical parameters, and critical load parameters are the same as those in Table 1, and \(n=3, a = 3.1\Delta x\) and \(n_p=25\) are adopted based on the conclusions of the convergence studies shown in Table 1. It can be seen in Table 2 that the state space DRK solutions converge when the total number of artificially divided layers \((N_l)\) is taken to be \(N_l=16\), and these sixteen-layer solutions are in excellent agreement with the modified Pagano solutions [Wu and Tsai (2012)] and LM4 ones [D’Ottavio and Carrera (2010)]. The state space DRK solutions are also compared with the solutions obtained using the refined and advanced 2D theories by D’Ottavio and Carrera (2010), such as ED2, ED4, EMZ4 and LM4, the modified Pagano solutions, and the ANSYS commercial software using 3D brick element with \((4x12x16), (8x25x16)\) and \((16x50x16)\) meshes in the \((x, \theta, \zeta)\) axes. Again, the performance of these 2D refined and advanced theories is shown to be \(\text{LM4} > \text{EMZ4} > \text{ED4} > \text{ED2}\). The relative errors between the modified Pagano solutions and sixteen-layer state space DRK ones are less than 0.5%, while those between the modified Pagano solutions and ANSYS ones using a mesh \((16x50x16)\) for \([0°/90°]_s\) laminated cylinders and a mesh \((16x50x32)\) for \([0°/90°/0°/90°]_s\) laminated ones are below 3%. In addition, the critical load parameters increase when the value of orthotropic ratio \((E_L/E_T)\) becomes greater, which implies that the gross stiffness of the cylinder becomes greater.
In this section, the buckling analysis of simply-supported, single-layered CNTRC circular hollow cylinders under axial compression is carried out, in which PmPV [Han and Elliott (2007)] is used as the matrix, the material properties of which are $\nu_m=0.34$ and $E_m=2.1$ GPa at room temperature (300K), and armchair (10, 10) single-walled CNTs are used as the reinforcements, the material properties of
A State Space Differential Reproducing Kernel Method

Figure 3: Variations of the critical load parameters of axially loaded and simply-supported, FG CNTRC cylinders with the length-to-radius ratio for $\hat{n} = 1 - 4$, $R/h = 10$ and $V_{CNT} = 0.11$ (a) UD, (b) FG R-type, (c) FG X-type.

which are $(E_{11})_{CNT} = 5646.6$ GPa, $(E_{22})_{CNT} = (E_{33})_{CNT} = 7080.0$ GPa, $(G_{12})_{CNT} = (G_{13})_{CNT} = (G_{23})_{CNT} = 1944.5$ GPa and $(\nu_{12})_{CNT} = (\nu_{13})_{CNT} = (\nu_{23})_{CNT} = 0.175$ (Zhang and Shen, 2006). In addition, the CNT efficiency parameters η_k ($k=1-3$) given in Eqs. (1a-c) are taken to be $\eta_1 = 0.149$ and $\eta_2 = \eta_3 = 0.934$ in the case of $V^*_{CNT} = 0.11$, $\eta_1 = 0.150$ and $\eta_2 = \eta_3 = 0.941$ in the case of $V^*_{CNT} = 0.14$, and $\eta_1 = 0.149$ and $\eta_2 = \eta_3 = 1.381$ in the case of $V^*_{CNT} = 0.17$, and these were determined by equalizing the elastic properties of CNTRC plates obtained using the rule of mix-
Figure 4: Variations of the critical load parameters of axially loaded and simply-supported, FG CNTRC cylinders with the length-to-radius ratio for $\hat{n} = 1-4$, $R/h = 10$ and $V_{CNT}^* = 0.17$ (a) UD, (b) FG R-type, (c) FG X-type.

The variations of the Young’s moduli, E_{11} and E_{22}, and shear modulus, G_{12}, with the thickness coordinate of the CNTRC cylinder for different CNT distributions, UD and FG R- and X-type distributions, in the case of $V_{CNT}^* = 0.17$, are shown in Fig. 2, and note that the integrations of these moduli through the thickness coordinate are identical to one another. Moreover, the dimensionless critical load parameter is defined as $(\bar{P}_x)_{cr} = (P_x)_{cr} R^2 / (2\pi R E_m h^3)$.

The variations and molecular dynamics simulation (Han and Elliott, 2007).
Table 3: Convergence studies for the state space DRK solutions of the critical load parameters of simply-supported, FG CNTRC cylinders under axial compression ($n=3, a=3.1\Delta x$, $n_p = 15$, $L/R=5$, $R/h=10$, and $(\tilde{P}_{cr}) = (P_{cr}R^2/(2\pi R E_m h^3))$).

<table>
<thead>
<tr>
<th>V_{CNT}^n</th>
<th>\hat{n}</th>
<th>Theories</th>
<th>UD-type</th>
<th>FG R-type</th>
<th>FG X-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>1</td>
<td>Present ($N_l = 5$)</td>
<td>19.2832</td>
<td>18.4827</td>
<td>20.3559</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 10$)</td>
<td>19.2840</td>
<td>19.0302</td>
<td>19.6978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 20$)</td>
<td>19.2848</td>
<td>19.0214</td>
<td>19.7113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 40$)</td>
<td>19.2848</td>
<td>19.0198</td>
<td>19.7153</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>19.3162</td>
<td>18.9896</td>
<td>19.7674</td>
</tr>
<tr>
<td>0.14</td>
<td>1</td>
<td>Present ($N_l = 5$)</td>
<td>20.3241</td>
<td>19.5325</td>
<td>20.9164</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 10$)</td>
<td>20.3257</td>
<td>20.0647</td>
<td>20.9018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 20$)</td>
<td>20.3257</td>
<td>20.0559</td>
<td>20.9209</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 40$)</td>
<td>20.3257</td>
<td>20.0543</td>
<td>20.9257</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>20.3695</td>
<td>19.5656</td>
<td>20.9843</td>
</tr>
<tr>
<td>0.17</td>
<td>1</td>
<td>Present ($N_l = 5$)</td>
<td>30.5164</td>
<td>29.6394</td>
<td>32.4039</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 10$)</td>
<td>30.5180</td>
<td>30.3763</td>
<td>31.4148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 20$)</td>
<td>30.5188</td>
<td>30.3723</td>
<td>31.4450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 40$)</td>
<td>30.5188</td>
<td>30.3715</td>
<td>31.4530</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>30.5658</td>
<td>28.4854</td>
<td>31.5316</td>
</tr>
<tr>
<td>0.11</td>
<td>2</td>
<td>Present ($N_l = 5$)</td>
<td>16.0977</td>
<td>14.9025</td>
<td>17.2032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 10$)</td>
<td>16.1001</td>
<td>15.1905</td>
<td>17.2882</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 20$)</td>
<td>16.1001</td>
<td>15.1643</td>
<td>17.3272</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 40$)</td>
<td>16.1009</td>
<td>15.1603</td>
<td>17.3367</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>16.1271</td>
<td>15.1820</td>
<td>17.4399</td>
</tr>
<tr>
<td>0.14</td>
<td>2</td>
<td>Present ($N_l = 5$)</td>
<td>18.9299</td>
<td>15.4587</td>
<td>22.7281</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 10$)</td>
<td>18.9323</td>
<td>15.5327</td>
<td>22.3509</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 20$)</td>
<td>18.9331</td>
<td>15.4309</td>
<td>22.4599</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ($N_l = 40$)</td>
<td>18.9331</td>
<td>15.4118</td>
<td>22.4878</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>19.3126</td>
<td>15.8701</td>
<td>22.6490</td>
</tr>
</tbody>
</table>
Table 4: The state space DRK solutions of the critical load parameters of simply-supported, CNTRC cylinders under axial compression \((n=3, a=3.1\Delta x, n_p = 15, L/R=5, V_{\text{CNT}}^* = 0.11, 0.14 \text{ and } 0.17)\), and \((\bar{P}_x)_{cr} = (P_x)_{cr}R^2/(2\pi RE_m h^3)\).

<table>
<thead>
<tr>
<th>(R/h)</th>
<th>(\hat{n})</th>
<th>Theories</th>
<th>CNT distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>UD-type</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Present ((N_l = 5))</td>
<td>5.3215</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 10))</td>
<td>5.3226</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 20))</td>
<td>5.3226</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 40))</td>
<td>5.3226</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>5.3322</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Present ((N_l = 5))</td>
<td>4.6701</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 10))</td>
<td>4.6712</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 20))</td>
<td>4.6723</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 40))</td>
<td>4.6723</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>4.6747</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Present ((N_l = 5))</td>
<td>7.4689</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 10))</td>
<td>7.1688</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 20))</td>
<td>7.2631</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 40))</td>
<td>7.2188</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>7.2442</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>Present ((N_l = 5))</td>
<td>58.8646</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 10))</td>
<td>58.8600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 20))</td>
<td>58.8600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 40))</td>
<td>58.8555</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>58.5862</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Present ((N_l = 5))</td>
<td>31.5491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 10))</td>
<td>31.5491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 20))</td>
<td>31.5491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 40))</td>
<td>31.5491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>31.5171</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Present ((N_l = 5))</td>
<td>23.6732</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 10))</td>
<td>23.6732</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 20))</td>
<td>23.6732</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present ((N_l = 40))</td>
<td>23.6732</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified Pagano (Wu and Tsai, 2012)</td>
<td>23.8796</td>
</tr>
</tbody>
</table>

Tables 3 and 4 show the convergence studies of the state space DRK solutions when varying the number of individual layers \((N_l)\) for the critical load parameters of axially loaded and simply-supported FG CNTRC cylinders with different CNT distributions, volume fractions of CNTs, wave number in the circumferential coordinate, and the radius-to-thickness ratio, in which \(n=3, a = 3.1\Delta x, n_p = 15, L/R=5, R/h=5, 10 \text{ and } 20, \text{ and } V_{\text{CNT}}^*=0.11, 0.14 \text{ and } 0.17\). It can be seen that the convergent solutions are obtained at \(N_l=20\), and these are in excellent agreement with the 3D elasticity solutions obtained using the modified Pagano method (Wu and Tsai, 2012). The critical load of a CNTRC cylinder increases when the volume fraction...
of CNTs becomes larger and the radius-to-thickness ratio smaller, which implies that the cylinder becomes stiffer, and these values for the cases of UD and FG R- and X-type CNT distributions are FG X-type > UD > FG R-type, in which “>” means larger, which reflects the fact that CNT reinforcements distributed close to the top and bottom surfaces are more efficient than those distributed near the mid-surface with regard to enhancing the stiffness of the CNTRC cylinders, and this is also found in Lei et al. (2013). Moreover, the lowest critical load parameter occurs at the second wave number in the circumferential coordinate ($\hat{n} = 2$) in the case of $R/h=10$, and thus will not be affected by changing the values of V_{CNT}^*. Figures 3 and 4 show variations of the critical load parameters of axially-loaded and simply-supported, FG CNTRC cylinders with the length-to-radius ratio for $V_{CNT}^*=0.11$ and 0.17, respectively, in which $\hat{n}=1-4$ and $R/h=10$, and the CNT distributions are UD, R-type and X-type ones. Referring to the figures, the magnitude of the lowest critical load parameters and their corresponding wave numbers (\hat{n}) for a wide range of length-to-radius ratios ($L/R=2-20$) are shown using a solid dark line. It can be seen that most of the lowest critical load parameters occur at $\hat{n}=2$, and that the critical load parameters for the cases of different CNT distributions are FG X-type > UD > FG R-type. The critical load parameters of the cylinder increase when the volume fraction of CNTs becomes greater, which means the cylinder becomes stiffer, while their corresponding wave numbers and the variation patterns between the lowest critical load parameter and length-to-radius ratio will not be affected.

7 Conclusions

On the basis of the RMVT, in this article we have developed the state space DRK method for the 3D buckling analysis of simply-supported, FG CNTRC circular hollow cylinders and laminated composite ones subjected to axial compression. In the illustrative examples, it is shown that these state space DRK solutions of critical load parameters converge rapidly, and are in excellent agreement with the exact 3D solutions and accurate ones obtained using higher-order layerwise theories and ANASYS software for simply-supported laminated composite cylinders available in the literature. When using this method, it is suggested that the highest order of the basis functions (n) should be set at $n \geq 3$, the number of uniformly-distributed nodes (N_p) be $N_p=29$, and that the radius of the influence zone (a) to be 3.1 times the spacing between the adjacent nodes (i.e., $a = 3.1\Delta z_m$) when $n=3$ is used. It is also seen in the illustrative examples that the critical load parameters of the cylinders for the cases of different CNT distributions are FG X-type > UD > FG R-type, which reflects the fact that CNT reinforcements that are distributed close to the top and bottom surfaces are more efficient than those distributed near the mid-surface with regard to enhancing the stiffness of the CNTRC cylinders. The critical load
parameters increase when the volume fraction of CNTs becomes greater, while their corresponding wave numbers and the variation between the lowest critical load parameter and length-to-radius ratio will not be affected.

Acknowledgement: This work was supported by the National Science Council of Republic of China through Grant NSC 100-2221-E-006-180-MY3.

References

Wu, C. P.; Jiang, R. Y. (2012): A state space differential reproducing kernel method for the 3D analysis of FGM sandwich circular hollow cylinders with com-
bimations of simply-supported and clamped edges. *Compos. Struct.*, vol. 94, pp. 3401-3420.

Ye, J. Q.; Soldatos, K. P. (1995): Three-dimensional buckling analysis of laminat-
Appendix A Derivatives of the DRK interpolation function

Because the DRK interpolation function in the present scheme, $F^a(x,z_m)$, is given in Eq. (49), its first-order derivative with respect to x is thus expressed as

$$
\frac{dF^a(x,z_m)}{dx} = \sum_{l=1}^{n_p} \psi^{(1)}(x)F_l = \sum_{l=1}^{n_p} \left(\bar{\phi}^{(1)}(x) + \frac{d\hat{\phi}_l(x)}{dx} \right) F_l;
$$

(A.1)

where $\psi^{(1)}(x)$ ($l=1,2,\ldots, n_p$) denote the shape functions of the first-order derivative of $F^a(x,z_m)$ with respect to x, and $\bar{\phi}^{(1)}(x) = w_a(x-x_l)P^T(x-x_l)\bar{b}_1(x)$. The differential reproducing conditions for a set of complete n^{th}-order polynomials are given as

$$
\sum_{l=1}^{n_p} \left[\phi^{(1)}(x) + \frac{d\hat{\phi}_l(x)}{dx} \right] x^r = rx^{r-1} \quad r \leq n.
$$

(A.2)

Equation (A.2) represents $(n+1)$ differential reproducing conditions, and the matrix form of these is given as

$$
\sum_{l=1}^{n_p} P(x-x_l) \bar{\phi}^{(1)}(x) = \sum_{l=1}^{n_p} P(x-x_l)w_a(x-x_l)P^T(x-x_l)\bar{b}_1(x)
$$

$$
= -P^{(1)}(0) - \sum_{l=1}^{n_p} P(x-x_l) \frac{d\hat{\phi}_l(x)}{dx},
$$

(A.3)

where $(-1)\left[P^{(1)}(0) \right] = -\frac{dP(x-x_l)}{dx}\bigg|_{x=x_l} = \left[0 \quad -1 \quad 0 \quad \cdots \quad 0 \right]^T$.

The undetermined function vector \(\vec{b}_1(x) \) can then be obtained, and this is given by

\[
\vec{b}_1(x) = A^{-1}(x) \left[-P^{(1)}(0) - \sum_{l=1}^{n_p} P(x-x_l) \frac{d\phi_l(x)}{dx} \right].
\] (A.4)

Substituting Eq. (A.4) into Eq. (A.1) yields the shape functions of the first-order derivative of the reproducing kernel interpolation function with respect to \(x \) in the form of

\[
\psi_l^{(1)}(x) = \bar{\phi}_l^{(1)}(x) + \frac{d\phi_l(x)}{dx},
\] (A.5)

where \(\bar{\phi}_l^{(1)}(x) = w_a(x-x_l) P^T(x-x_l) A^{-1}(x) \left[-P^{(1)}(0) - \sum_{l=1}^{n_p} P(x-x_l) \frac{d\phi_l(x)}{dx} \right] \).

Carrying out a similar derivation for the higher-order derivatives of \(F^a(x,z_m) \) leads to

\[
\frac{d^k F^a(x)}{dx^k} = \sum_{l=1}^{n_p} \psi_l^{(k)}(x) F_l,
\] (A.6)

where \(\psi_l^{(k)}(x) = \bar{\phi}_l^{(k)}(x) + \frac{d^k\phi_l(x)}{dx^k} \),

\[
\bar{\phi}_l^{(k)}(x) = w_a(x-x_l) P^T(x-x_l) A^{-1}(x) \left[(-1)^k P^{(k)}(0) - \sum_{l=1}^{n_p} P(x-x_l) \frac{d^k\phi_l(x)}{dx^k} \right],
\]

\[
P^{(k)}(0) = \frac{d^k P(x-x_l)}{dx^k} \bigg|_{x=x_l}.
\]