2D Wave Scattering by a Crack in a Piezoelectric Plane Using Traction BIEM

D. Gross1, T. Rangelov2, and P. Dineva3

Abstract: Scattering of time harmonic waves by a finite crack in a homogeneous piezoelectric plane under plane strain conditions is studied. Using generalized displacements and tractions, the problem is described by a non-hypersingular traction based boundary integral equation method (BIEM). The fundamental solution is derived in closed form by Radon transforms. As a typical example, the procedure is applied to a straight crack under incident longitudinal waves and under vertically polarized shear waves. The K-factor results are compared with those from the literature for a special case. Furthermore, their dependence on parameters like frequency, angle of incidence, wave type and material properties is discussed.

Keyword: Piezoelectric, materials, Wave scattering, BIEM, SIF.

1 Introduction

Piezoelectric ceramic materials are anisotropic dielectrics, where both the electric and the elastic fields are coupled. They are extensively utilized as transducers, sensors and actuators in many fields like telecommunication, robotics, microelectronics, mechatronic or adaptive intelligent structures. Piezoelectric materials are inherently brittle. The components made from them usually contain natural flaws due to the manufacturing process and unavoidable artificial stress concentrators on account of their specific composition e.g. as actuating component. This is the reason why linear fracture analysis plays an important role for analyzing the electro-mechanical behavior including reliable failure and lifetime predictions. The knowledge of electro-mechanical stress intensity factors (SIF) for static and dynamic loading conditions may provide useful information concerning crack initiation and final fracture of a structure.

Restricting the focus on time-harmonic solutions a few more investigations have to be mentioned. An analyti-
The paper is structured as follows. In section 2 the boundary value problem is described and its traction BIE formulation is given. The fundamental solution for the governing equations is derived by Radon transforms in section 3. Section 4 describes the numerical implementation. Finally, the validation of the BIEM solution and a series of numerical results for a finite crack subjected to L and SV-waves with different angles of incidence and for different material parameters are discussed in section 5, followed by a conclusion in section 6.

2 Problem statement and traction BIE

We consider an infinite homogeneous piezoelectric plane region containing an arbitrary shaped crack \(S_{cr} \), see Figure 1. Using the coordinates \(x_1, x_3 \) and assuming plane strain conditions, the non-zero field quantities are the displacement \(u_i \), the stresses \(\sigma_{ij} \), the electric displacement \(D_i \) and the electric field intensity \(E_i \), where \(i, j = 1 \) or 3.

The basic equations of linear piezoelectricity in absence of body forces and charges consist of the balance equations

\[
\sigma_{ij} \cdot \delta_{ij} = \rho \ddot{u}_i
\]

and the kinematical and electric field-potential relations

\[
s_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}) \quad E_i = -\Phi_i
\]

where \(s_{ij}, \Phi \) and \(\rho \) are the strain tensor, the electric potential and the mass density, respectively. The summation convention for repeated indices is implied, subscript
commas denote differentiation with respect to spatial coordinates while superscript dots indicate time derivatives. Introducing the generalized displacement \(u_J = (u_1, u_3, \Phi) \), \(J, K = 1, 3 \) or 4, the constitutive equations can be written as

\[
\sigma_{ij} = C_{ijkl} u_{kl} = C_{ijkl} s_{ki}
\]

where \(\sigma_{ij} \) and \(C_{ijkl} \) are the generalized stress and elasticity tensors. Using the contracted Voigt notation that reduces the fourth-order elastic and third order piezoelectric tensor to second order ones, these quantities and the generalized strain are given by

\[
\begin{aligned}
\sigma_{ij} &= \begin{pmatrix} \sigma_{11} \\ \sigma_{33} \\ \sigma_{13} \\ D_1 \\ D_3 \end{pmatrix},
\end{aligned}
\]

\[
\begin{aligned}
s_{ki} &= \begin{pmatrix} s_{11} \\ s_{33} \\ 2s_{13} \\ -E_1 \\ -E_3 \end{pmatrix},
\end{aligned}
\]

\[
C_{ijkl} = \begin{pmatrix} 0 & e_{31} & c_{11} & c_{13} & 0 \\ e_{31} & 0 & c_{13} & c_{33} & 0 \\ 0 & 0 & 0 & 0 & c_{44} \end{pmatrix},
\]

\[
e = \begin{pmatrix} 0 & e_{31} \\ 0 & e_{33} \\ e_{15} & 0 \end{pmatrix},
\]

Here \(c_{11}, c_{33}, c_{44}, c_{13} \) are the elastic, \(e_{11}, e_{33} \) are the dielectric and \(e_{31}, e_{33}, e_{15} \) are the piezoelectric constants. The elastic and dielectric constants are assumed to be positive definite, i.e. \(c_{ijkl} q_{jl} q_{ki} > 0, e_{jk} p_{j} p_{k} > 0 \) for any real nonzero tensor \(q_{jl} \) and vector \(p_{k} \). These thermodynamically based conditions ensure a stable piezoelectric material. They express that the internal energy density must remain positive since this energy must be minimal in a state of equilibrium, see Dieulesaint & Royer (1974).

Assuming a time-harmonic motion with an angular frequency \(\omega \) and suppressing the common term \(e^{i\omega t} \), the balance equations (1) in generalized notation take the form

\[
\sigma_{ij,\omega} + \rho_{jk} \omega^2 u_K = 0
\]

where \(\rho_{jk} = \begin{cases} \rho, & J, K = 1, 3 \\ 0, & J = 4 \text{ or } K = 4 \end{cases} \). In what follows, traction-free crack faces \(S_{\text{cr}} = S_{\text{cr}}^+ \cup S_{\text{cr}}^- \), i.e.

\[
t_J = 0 \quad \text{on} \quad S_{\text{cr}}
\]

are supposed where \(t_J = \sigma_{ij} n_i \) is the generalized traction vector and \(n_i \) is the unit normal vector on \(S_{\text{cr}}^+ \). This specific boundary condition implies that the crack surfaces are free of both mechanical traction and surface charges, i.e., the crack is assumed to be electrically impermeable. In this case the electric field inside the crack is ignored and the crack may be thought as a low-capacitance medium with a potential drop \(\Delta \Phi = \Phi^+ - \Phi^- \).

The interaction of an incident time-harmonic wave with the crack induces scattered waves. Due to the linearity of the problem the total wave field can be written as a sum of the incident and the scattered wave field:

\[
u_J(x) = u_J^\text{in}(x) + u_J^\text{sc}(x), \quad t_J(x) = t_J^\text{in}(x) + t_J^\text{sc}(x)
\]

The incident wave is assumed to be known while the scattered wave field is unknown. It has to satisfy the field equations (2)-(5), Sommerfeld’s radiation condition at infinity and the boundary condition (6), which can be rewritten as

\[
s_{\text{cr}}^+ = -t_J^\text{in} \quad \text{on} \quad S_{\text{cr}}
\]

Comparing the piezoelectric crack boundary value problem in generalized notation with that of the corresponding elastic problem, a total agreement can be stated, see e.g. Zhang & Gross (1998). In view of this, using the representation formulas, see Khutorianski & Sosa (1995a), Pan (1999) and Wang, Zhang & Hirose (2003) and following the procedure for the elastic case, the boundary value problem may be formulated in terms of a traction BIE in frequency domain. For the 2D case in plane strain it reads, see Gross, Dineva & Rangelov (2002) and Wang & Zhang (2004)

\[
t_J^\text{in}(x) = C_{ijkl} q_{kl} n_i(x)
\]

\[
\int_{S_{\text{cr}}^+} \left[\left(\sigma_{ijkl} q_{jk} \Delta u_{pq} n_i(y) - \rho_{pq} \omega^2 U_{ik}^r(x,y) \Delta u_{pq} + \sigma_{ijkl} q_{jk} \Delta u_{pq} n_i(y) \right) \delta_{ij}
\]

\[
\left. \frac{\partial \sigma_{ijkl} q_{jk}}{\partial y} \right|_{S_{\text{cr}}^+} \right) n_k dS_{\text{cr}} , \quad x \in S_{\text{cr}}^+
\]

where \(U_{ik}^r \) is the fundamental solution of Eq.(5) and \(\sigma_{ijkl}^{\text{ik}} = C_{ijkl} U_{ik}^r \) are the corresponding stresses. Furthermore, \(\Delta u_J = u_J|_{S_{\text{cr}}^+} - \bar{u}_J|_{S_{\text{cr}}^-} \) is the unknown generalized crack opening displacement (COD) and \(\delta_{ij} \) is the Kronecker symbol. Once the solution of (9), i.e., \(\Delta u_J \), is known for a given frequency \(\omega \), the displacements and tractions of the scattered field and by this the total field in the whole region can be determined from the representations

\[
u_J^\text{sc}(x) = -\int_{S_{\text{cr}}^-} \sigma_{ijkl} \Delta u_M(y) n_i(y) dS_{\text{cr}} , \quad x \notin S_{\text{cr}}^+
\]
\[t^m_j(x) = -C_{JK}n_i(x) \]
\[\int \left[(\sigma'_{nPK}(x,y)\Delta u_{PK}(y) - \rho_0\omega^2 U^*_{QK}(x,y)\Delta u_P) \right] \delta_{kl} - \sigma'_{JK}(x,y)\Delta u_{Jl}(y) \right] n_x dS_{cr}, \quad x \notin S^\ast_{cr} \]
\[(11) \]

3 Fundamental solution and incident plane wave

For the numerical solution of the integrodifferential equation (9), the traction \(t^m_j \) on the crack face due to the incident wave must be known. Furthermore, the fundamental solution \(U^* \) and the corresponding stress \(\sigma^* \) have to be available in an appropriate form. The derivation of the fundamental solution and the representation of the incident plane wave follow the lines given by Gross, Dineva & Rangelov (2002).

3.1 Fundamental solution

Since Eq. (5) has constant coefficients, a fundamental solution \(U^* \) exists, see John (1955), which can be represented as the 3 \times 3 matrix \(U^* = \{ U^*_{ijkl} \} \). Here \(U^*_j \) and \(U^*_ij \) are the displacement in i-direction and the electric potential at an observation point \(x = (x_1,x_2) \) due to an impulsive unit force applied at source point \(x_0 = (x_01,x_02) \) in j-direction while \(U^*_ij \) and \(U^*_jk \) are the displacement in i-direction and the electric potential on account of a unit point charge. As in the foregoing section, small subscripts vary by 1, 3 and capital subscripts by 1, 3, and 4. The matrix function \(U^* \) is solution of the equation
\[(D(\partial) + \rho \omega^2 J_3) U^* (x,x_0) = -\delta(x-x_0) I_3 \]
\[(12) \]
where \(\delta \) is the Dirac delta function, \(J_q = \begin{pmatrix} I_{q-1} & 0 \\ 0 & 1 \end{pmatrix} \) with \(I_q \) being the \(q \times q \) unit matrix and the 3 \times 3 matrix differential operator \(D(\partial) \) consists of the elements \(d_{ij}(\partial) = C_{JKi}\partial_j \). The fundamental solution of the problem at hand can be derived by Radon transforms, see Ludwig (1966) and Zayed (1996). Let \(\hat{f}(x) \) be a function defined in \(R^2 \) and \(s \) be a real number, \(m \in R^2 \) then Radon transforms \(R \) of \(f(x) \) is defined as
\[\hat{f}(s,m) = R[f(x)] = \int_{<m,x>=s} f(x) d\Omega = \int f(x) \delta(s-<m,x>) dx \]
\[R^2 \]
\[(13) \]
where \(<,> \) denotes the scalar product in \(R^2 \). This means, Radon transforms is an integration of \(f(x) \) over all planes defined by \(<m,x> = s \). The inverse Radon transform can be written as
\[f(x) = \frac{1}{4\pi^2} \int_{|m|=1} K(\hat{f}(s,m)) |_{s=<m,x>} dm, \]
\[(14) \]
\[K(\hat{f}) = \int_{-\infty}^{+\infty} \hat{\partial_s^2 \hat{f}(\sigma,m)} |_{m=\sigma-\sigma} d\sigma \]
The following Radon transforms properties will be used:
\[\hat{f}(\alpha x, \alpha m) = \frac{1}{\alpha^2} \hat{f}(x,m); \quad R(\alpha f_1 + \alpha f_2) = \alpha \hat{f}_1 \hat{f}_2; \]
\[R(\partial_j f(x)) = m_j \partial_s \hat{f}(x,m); \quad R(\delta(x)) = \delta(s). \]
Applying Radon transforms to Eq. (12), taking for simplicity \(x_0 = (0,0) \) and having in mind the Radon transform properties, we obtain
\[(D(m)\partial_s^2 + \rho \omega^2 J_3) \hat{U}^*(s,m) = -\delta(s) I_3 \]
\[(15) \]
where the matrix \(D(m) \) is obtained from \(D(\partial) \) simply by replacing \(\partial_j \) by \(m_j \). The matrix equation (15) consists of three systems with three linear equations. Expressing the functions \(\partial_s^2 \hat{U}^*_{ij} \) by
\[\partial_s^2 \hat{U}^*_{ij} = d_{44}^{-1}(d_{44}\partial_s^2 \hat{U}^*_{ij} + \delta_{ij}\delta(s)) \]
\[(16) \]
it can be reduced to the matrix equation
\[(\hat{D}(m) \partial_s^2 + \rho \omega^2 I_2) \hat{U}^*(s,m,\omega) = \hat{F} \]
\[(17) \]
consisting of three systems with two equations where \(\hat{U}^* \) is a 2 \times 3 matrix (the first two rows of \(\hat{U}^* \)). The so-called 'stiffened matrix' \(\hat{D}(m) \), see Daros (1999), is a 2 \times 2 matrix with the components \(\tilde{d}_{ij}(m) = d_{ij}(m) - d_{44}^{-1}(m)d_{44}(m)d_{ij}(m) \) and \(\hat{F} \) is a 2 \times 3 matrix with the components \(\tilde{f}_{jk} = \delta_{jk}\delta(s) - d_{44}^{-1}(m)\delta_{4j}(\delta_{j1} + \delta_{j3})\delta(s) \).
Equation (17) is a linear system of ordinary differential equations and in order to solve it, we will use its canonical form. On account of the properties of the material constants \(C_{JKL} \), the matrix \(\hat{D}(m) \) is symmetric and positive definite, i.e. \((Tr\hat{D}(m))^2 - 4\det\hat{D}(m) > 0 \) is satisfied for every \(m \neq 0 \). Consequently, \(\hat{D}(m) \) has two different positive eigenvalues \(b_1(m) > b_2(m) > 0 \) and corresponding orthogonal and unit eigenvectors \(g_1(m) \) and \(g_2(m) \) exist. Their components form the orthogonal matrix \(T(m) = \begin{pmatrix} g_1^1 & g_1^2 & g_1^3 \\ g_2^1 & g_2^2 & g_2^3 \end{pmatrix} \) that changes the basis to the
basis of eigenvectors. Substituting
\[\tilde{U}^*(s,m) = T(m) V(s,m), \]
\[\tilde{F}(m,s) = T(m) F(m,s) \] (18)
into Eq. (17), multiplying from the left side with \(T^{-1}(m) \)
and having in mind that
\[T^{-1}(m) \tilde{D}(m) T(m) = B(m) = \begin{pmatrix} b_1(m) & 0 \\ 0 & b_2(m) \end{pmatrix}, \]
the system of equations (17) will be decoupled:
\[(B(m) \partial_s^2 + \rho \omega^2 I_2) V(s,m) = -F(s,m) \] (19)
Equations (19) are six ordinary differential equations of the type
\[(b(m) \partial_s^2 + \rho \omega^2 I_2) V(s,m) = -\delta(s) f(m) \] (20)
with the solution, see Vladimirov (1984),
\[V(s,m) = \alpha(m) f(s,m) e^{k(m)s} \]
\[k(m) = \omega \sqrt{\rho / b(m)}, \alpha = i (2b(m)k(m))^{-1} \] (21)
where \(f(s,m) \) depends on \(g_j \). Therefore, we get
\[\tilde{U}^* = TV, V_{pq} = \alpha p \delta_q e^{ik(s)} \]
\[k_p = \omega \sqrt{\rho / b_p}, \quad \alpha_p = i (2b_p(m)k_p(m))^{-1} \] (22)
Having \(\tilde{U}^*_{kj} = \hat{U}^*_{kj} \), the function \(\hat{U}^*_{kl} \) can be obtained from
Eq. (16). From the \(3 \times 3 \) matrix \(\hat{U}^* \) the fundamental solution \(U^* \) is constructed through inverse Radon transforms
which is defined by Eq. (14).
Applying this procedure, the functions \(U_{ij}^* \), \(i, j = 1, 3 \) can be written as
\[\{U_{ij}^*(x,x_0)\} = \int_{|m|=1} \begin{pmatrix} g_1^1 & g_1^2 \\ g_1^1 & g_1^2 \end{pmatrix} \begin{pmatrix} g_1^1 W_1 & g_1^2 W_1 \\ g_1^3 W_2 & g_1^4 W_2 \end{pmatrix} \right|_{s=|x-x_0,m|} \quad dm, \] (23)
where
\[W_j(s) = B_j \left[i \pi e^{ik_j s} - 2 (ci(k_j s) \cos(k_j s) + si(k_j s) \sin(k_j s)) \right], B_j = (8\pi^2 b_j)^{-1} \]
and
\[\text{ci}(t) = -\int_0^t \frac{\cos(t')}t dt', \quad \text{si}(t) = -\int_0^t \frac{\sin(t')}t dt' \]
are the integral sin and integral cosine functions, see Bateman & Erdelyi (1953). The functions \(U_{ij}^* \) for \(i = 1, 3 \) have the form
\[\{U_{ij}^*(x,x_0)\} = \int_{|m|=1} \begin{pmatrix} g_4^1 & g_4^2 \\ g_4^1 & g_4^2 \end{pmatrix} \begin{pmatrix} g_4^1 W_1 & g_4^2 W_1 \\ g_4^3 W_2 & g_4^4 W_2 \end{pmatrix} \right|_{s=|x-x_0,m|} \quad dm, \] (24)
where \(g_4^k = -d_{44}^{-1} (d_{14} g_1^k + d_{34} g_3^k) \), \(k = 1, 2 \) and finally
\[U_{ij}^*(x,x_0) = h_1(x,x_0) + h_2(x,x_0), \]
with
\[h_1(x,x_0) = \left(\int_{|m|=1} \begin{pmatrix} g_4^1 & g_4^2 \\ g_4^1 & g_4^2 \end{pmatrix} \right) \right|_{s=|x-x_0,m|} \quad dm, \] (25)
where
\[h_2(x,x_0) = \frac{1}{4\pi^2} \int_{|m|=1} d_{44}^{-1} \ln |s| \quad dm. \] (26)
The derivatives of the fundamental solution \(U^* \) and its corresponding stress \(\sigma^* \) can be found using the function
\[\partial_s W_j(s) = B_j \left[-\pi k_je^{ik_j s} - \frac{2}{s} + 2k_j (ci(k_j s) + \sin(k_j s) - si(k_j s) \cos(k_j s)) \right] \]
Furthermore, from Eqs.(23)–(26) the near-field asymptotic of \(U_{ij}^* \) and \(\sigma_{kIJ}^* \) yields as
\[U_{IJ}^* \approx b_{IJ} \ln |x-x_0|, \quad \sigma_{kIJ}^* \approx d_{kIJ} \frac{1}{|x-x_0|} \quad \text{for} \quad x \to x_0 \] (27)
where \(b_{IJ} \) and \(d_{kIJ} \) depend on the elastic, dielectric and piezoelectric constants and the density, but not on the frequency \(\omega \). By comparison, it can be seen that the asymptotic behavior for the time-harmonic case is the same as for the corresponding static case, see Rajapakse & Xu (2001). It also shall be mentioned that the fundamental solutions for the elastic-isotropic and elastic-anisotropic cases can also be derived by following the procedure described above. Note that for the anisotropic case the transient and time-harmonic fundamental solution has been obtained by Wang & Achenbach (1994).
3.2 Incident plane wave

The incident wave displacement u_0^j and traction t_0^j are obtained as solution of Eq. (5) using the wave decomposition method, see Courant & Hilbert (1962). At a fixed frequency ω we seek a solution in form of a plane wave

$$\mathbf{U}(x, \xi) = p \exp \left\{ -i \vec{k} \cdot (x, \xi) \right\}$$ \hspace{1cm} (28)

where $\xi = (\xi_1, \xi_3)$ is a given wave propagation direction and the polarization vector $p = (p_1, p_3, p_4)$ and the real wave number \vec{k} are unknown. The vector function \mathbf{U} has to satisfy Eq. (12) with zero right hand side:

$$(\mathbf{D} \partial + \rho \omega^2 J_3) \mathbf{U}(x, \xi) = 0$$ \hspace{1cm} (29)

Applying the procedure described in section 3.1, the generalized plane wave solution is found as a superposition of the two types of incident plane waves

$$\mathbf{U}^j(x, \xi) = \rho^j \exp \left\{ -i \vec{k}_j \cdot (x, \xi) \right\},$$

$$\vec{k}_j = \omega \sqrt{\rho / \beta_j(\xi)}, \quad j = 1, 2$$ \hspace{1cm} (30)

where $\beta_j > 0$ are the eigenvalues of the stiffened matrix $\mathbf{D}(\xi)$, $\rho^j = (p_1^j, p_3^j)$ are the unit and orthogonal eigenvectors of $\mathbf{D}(\xi)$ and $p_4^j = -d^{-1}_{44}(\xi) d_{4i} p_i^j$.

The linear combination $\mathbf{U} = \alpha_1 \mathbf{U}^1 + \alpha_2 \mathbf{U}^2$ represents the set of all plane wave solutions of Eq. (5) where $\alpha_1 = 1, \alpha_2 = 0$ corresponds to L-waves, while $\alpha_1 = 0, \alpha_2 = 1$ corresponds to SV-waves. Note that in contrast to isotropic elasticity the eigenvalues β_1, β_2 depend in anisotropic and piezoelectric cases on the wave propagation direction ξ. Using Eqs. (2) – (4) the generalized incident stress tensor and corresponding traction vector on the crack S_{cr}^+ that appears on the left hand side of Eq. (9) can be determined.

For example, let the crack S_{cr}^+ be a segment on the x_1-axis and let the incident wave be a L-wave with incidence angle $\theta = \pi/2$, i.e. normal to the crack, then the expression for the incident displacement field has the form, see Eq. (30), $\vec{u}_1^0 = 0, \vec{u}_3^0 = e^{-ik_1 x_3}, \vec{u}_4^0 = e^{ik_1 x_3}$, where $k_1 = \omega \sqrt{(c_{33} + e^{2}_{33} \varepsilon_{33})^{-1}} \rho$ and the incident traction on the crack is

$$\vec{t}_1^0 = 0, \vec{t}_3^0 = -i \omega \sqrt{(c_{33} + e^{2}_{33} \varepsilon_{33})^{-1}} \rho, \vec{t}_4^0 = 0.$$ \hspace{1cm} (31)

4 Numerical solution procedure

The numerical solution scheme follows that developed in Dineva, Gross & Rangelov (1999, 2002) and Rangelov, Dineva & Gross (2003) for an isotropic material. The non-hypersingular traction BIEs are collocated on one side of the crack boundary using displacement jumps (COD) as unknowns. The displacement and traction are approximated with parabolic shape functions which satisfy Hölder continuity at least at the collocation points and show an asymptotic $O(\sqrt{r})$-COD behaviour near the crack tips. Quarter-point boundary elements (QP-BE) are implemented in a quadratic boundary element discretization. The disadvantage of the standard quadratic approximation regarding the smoothness at all irregular points is overcome by the shifted point method. After discretization the obtained integrals are at least CPV integrals. The regular integrals are computed employing the Gaussian quadrature scheme for one-dimensional integrals and Monte Carlo integration scheme for two-dimensional integrals. All integrals with singular kernels are solved analytically in the small neighbourhood of the field point, using the approximation of the fundamental solution for a small argument.

After discretization of the non-hypersingular traction BIEs (9) and satisfying boundary conditions on the crack, an algebraic system of equations for the CODs is obtained and solved. The SIFs directly are obtained from the traction nodal values ahead of the crack tip, see Aliabadi & Rooke (1991), Suo, Kuo, Barnett & Willis (1992).

The program codes basing on Mathematica and FORTRAN have been created following the above described procedure.

5 Validation and numerical results

In order to validate the described approach, a straight crack in a transversely-isotropic piezoelectric plane under normal incident L-waves is investigated. The results for the stress intensity factors are compared with those of Shindo & Ozawa (1990), who reduced this problem by Fourier transforms to a pair of dual integral equations and finally expressed its solution in terms of a Fredholm integral equation of second kind. Subsequently, to study the dependence of the stress intensity factors on the different parameters, results are presented for L- and SV-wave loading, for different angles of incidence and for
different material constants.

In all numerical examples, the crack of length 2a is located in the interval (−a, +a) on the x₁-axis. It is divided into 7 boundary elements and the shifted points numerical scheme is used. The generalized dynamic SIF’s are calculated by using the formulae

\[
K_I = \lim_{x_1 \to a^-} t_3 \sqrt{2\pi(x_1 + a)},
\]

\[
K_{II} = \lim_{x_1 \to a^+} t_3 \sqrt{2\pi(x_1 + a)},
\]

\[
K_{IV} = \lim_{x_1 \to a^-} t_4 \sqrt{2\pi(x_1 + a)}
\]

(32)

where \(t_j\) is the generalized traction at the point \((x_1, 0, 0)\) close to the crack-tip. For convenience they are normalized by an appropriate static value, i.e. the normalization coefficient for the mechanical SIF’s is

\[
k = \frac{\bar{t}_3}{t^0_3} \left(\xi, \omega \right) b_1(\xi, \omega) \left| \xi = 0 \right. \sqrt{\pi a} = \left| \bar{t}^0_3 \right| \sqrt{\pi a}
\]

(33)

where \(t^0_3\) is the traction of the normal incident L wave, according to Eq. (31). The generalized displacement \(u_j^0\) and generalized traction \(t_j^0 = G_j^0 n_1\) for an incidence angle \(\theta\) and at the point \(x = (x_1, 0, 0) \in S_o\) are obtained from Eq. (30), where \(\bar{\sigma}^0, \bar{\tau}^0\) are used for the L and SV-wave respectively.

The materials constants of the three different piezoelectric materials under consideration are taken from Dieulusaint & Royer (1974) and listed in Tab. 1. For the validation test and the study of the dependence on the wave incidence angle PZT-6B is used.

Figs. 2a,b show the variation of the normalized mechanical mode I and the normalized electrical field stress intensity factor |\(e_{33}k^{-1}K_E\)| versus the normalized frequency \(\Omega = a\Omega_1\sqrt{\rho \varepsilon_{44}^{-1}}\). Note that in the case of a normal incident L-wave, according to Eq. (30), \(E_1 = 0\) and \(u_1 = 0\) holds and \(E_3\) can be obtained at every point along \(x_1\) out of the crack from the constitutive equation (3), i.e.

\[
\begin{align*}
t_3 &= c_{33}u_{3,3} - e_{33}E_3 \\
t_4 &= e_{33}u_{3,3} + e_{33}E_3
\end{align*}
\]

(34)

from which

\[
E_3 = (t_4 e_{33} - e_{33} t_3) \left(e_{33} c_{33} + e_{33}^2 \right)^{-1}
\]

(35)

Then \(K_E = \lim_{x \to a^\pm} E_3 \sqrt{2\pi(x \mp a)}\) where the electric field \(E_3\) is calculated from (35) at a point close to the crack-tip.

| Table 1 : Properties of the piezoelectric materials. |
|---|---|---|---|
| Constants | PZT-5H | PZT-6B | PZT-7A |
| Elastic stiffness \(10^3 C/m^2\) | \(c_{11}\) | 12.6 | 16.8 | 14.8 |
| | \(c_{13}\) | 5.3 | 6.0 | 7.42 |
| | \(c_{33}\) | 11.7 | 16.3 | 13.1 |
| | \(c_{44}\) | 3.53 | 2.71 | 2.54 |
| Piesoelectric coefficients \(C/m^2\) | \(e_{31}\) | -6.5 | -0.9 | -2.1 |
| | \(e_{33}\) | 23.3 | 7.1 | 9.5 |
| | \(e_{45}\) | 17.0 | 4.6 | 9.7 |
| Dielectric constants \(10^3 C/Vm\) | \(\varepsilon_{11}\) | 151 | 36 | 81.1 |
| | \(\varepsilon_{33}\) | 130 | 34 | 73.5 |
| Density \(10^3 kg/m^3\) | \(\rho\) | 7.6 | 7.55 | 7.5 |

Figure 2 : Dynamic SIF versus frequency \(\Omega\) for normal incident L wave: a) mechanical SIF-I, b) electrical SIF-E
Figure 3a: Dynamic SIFs versus frequency Ω for L-wave loading with different incidence angle: (i) mechanical SIF-I, (ii) mechanical SIF-II, (iii) electrical SIF-D.

Figs. 2a, b show a very good agreement between the results of Shindo and Ozawa (1990) and the used BIEM technique. The maximum differences within the considered frequency domain are 7-8%. This approves the accuracy and applicability of the non-hypersingular traction based BIEM for the solution of 2D in-plane wave problems in piezoelectric materials with cracks.

In the following, a set of numerical results for a wave loaded straight crack is presented highlighting the dependence of the stress intensity factors on the frequency, the wave type, the incidence angle and the material constants. Note that in Figs. 2 and 4 (for the incidence angle $\theta = \pi/2$) the normalized mechanical and electric field intensity factor $|e_{33}k^{-1}K_E|$ are displayed while in Figs. 3, 5 and 6 the normalized mechanical and electric displacement intensity factor $|e_{33}(e_{33}k)^{-1}K_D|$ are depicted.

Figs. 3a,b display for incident L and SV-waves the dynamic normalized SIFs versus normalized frequency Ω for different angles of incidence.

The first maximum of the SIF-I for an incident L-wave,
see Fig. 3a (i), appears approximately at $\Omega = 1$ for all considered angles of incidence. Its amplitude, commonly called dynamic amplification, decreases from 1.289 for $\theta = 90^\circ$ and 1.173 for $\theta = 60^\circ$ to 0.429 for $\theta = 0^\circ$ (grazing incidence). The second peak occurs at different frequencies depending on the incidence angle. The SIF-II curves in Fig. 3a (ii) indicate close results for L-wave incidence angles 30°, 45° and 60°, except $\theta = 0^\circ$ where SIF-II is zero. The electrical displacement SIF-D in Fig. 3a (iii) has its maximal values for an incidence angle $\theta = 0^\circ$ and minimal ones for $\theta = 60^\circ$. The dependence on the frequency is weak.

The first maximum of SIF-I in case of an incident SV-wave, see Fig. 3b (i), appears approximately at $\Omega = 0.8$ for all considered angles of incidence. The dynamic amplification varies here from 0.6592 for $\theta = 30^\circ$, 0.589 for $\theta = 45^\circ$ to 0.383 for $\theta = 60^\circ$. The second peak again occurs at different frequencies depending on the wave incidence angle. The SIF-II curves in Fig. 3b (ii) show maximal values for SV-waves at an incidence angle $\theta = 0^\circ$ while at $\theta = 45^\circ$ SIF-II is zero. The electrical displacement SIF-D in Fig. 3b (iii) again is weakly dependent on the frequency and displays close results for incidence angles 30°, 45° and 60°; at $\theta = 0^\circ$ SIF-D is zero.

The sensitivity of the stress intensity factors to the material parameters can be seen from Fig. 4a,b. It shows the normalized SIF’s versus normalized frequency Ω for normal incident L and SV-waves and three different piezoelectric ceramics. For L-wave loading it can be seen from Fig. 4a that PZT-5H delivers the highest SIF values followed by PZT-6B. The SIF curves for PZT-7A is in between the SIF curves for PZT-5H and PZT-6B. While the dependence of SIF-I on the material is relatively weak this cannot be said for SIF-E. For SV-wave loading a strong dependence of SIF-II on the material constants can be observed from Fig. 4b. PZT-5H again delivers the maximum dynamic amplification followed by PZT-7A.

The influence of the wave type, the incidence angle and the material constants on the amplification effect is depicted in Figs. 5 and 6 where the normalized SIFs versus incidence angle at fixed frequency $\Omega = 0.8$ are displayed for L and SV-waves and three different piezoelectric ceramics. The SIF-I and II dependence on the angle of inc-
Figure 5: Dynamic SIF versus incidence angle for L-wave loading at fixed frequency $\Omega = 0.8$ for three different materials: (i) mechanical SIF-I, (ii) mechanical SIF-II, (iii) electrical SIF.

electrical displacement intensity factors for both wave types are depicted in Fig. 5 (iii) and Fig. 6 (iii). Generally, the study shows that the dynamic mechanical and electrical SIF's are quite sensitive to the type of the wave, the frequency, the angle of incidence and also to
6 Conclusion

A 2D analysis of an arbitrarily shaped crack in an infinite transversely isotropic piezoelectric material is presented by non-hypersingular traction BIEM in frequency domain. The 2D dynamic fundamental solution obtained by Radon transform in frequency domain is derived in closed form. A numerical scheme for the solution and determination of generalized SIF’s is validated by comparison with results for the line crack from the literature. It shows a good accuracy even when the crack is discretized by a low number of elements.

Parametric studies for the diffraction of longitudinal and shear waves by the line crack under different angles of incidence, at different frequencies and for different piezoelectric materials are presented. The results show that the stress intensity factors strongly depend on the combined influence of the aforementioned parameters.

The derived fundamental solution, the numerical scheme presented and the program codes developed can be used as a good basis for the solution of dynamic piezoelectric problems with a more complex geometry (e.g. finite cracked multilayered regions) and mechanics (e.g. general anisotropy, crack-interaction, inhomogeneity), different dynamic loading (e.g. transient) and different type of the electrical boundary conditions.

Acknowledgement: The authors acknowledge the support of the DFG under the grant number 436BUL 113/118/0-1.

7 References

