Advanced Search
Displaying 21-30 on page 3 of 484. Per Page  
  • Expression of Endothelial Tight Junction Protein Occludin under Mechanical Factors after Stent Implantation
  • Abstract Tight junctions are the most apical intercellular junctions of the lateral membrane in endothelial cells, regulating the paracellular material and energy exchange and maintain plasma membrane polarity. Occludin protein is one of the important proteins involved in endothelial tight junctions, and also closely related to the occurrence of atherosclerosis. Therefore, the study of occludin is valuable [1]. With the implantation of coronary stents, the integrity of the vascular endothelium is damaged and the local mechanical environment at the stent segment was changed [2]. The present study tried to explore the impact of mechanical stimulation after stent implantation on the expression…
  • More
  •   Views:1441       Downloads:134        Download PDF
  • Mechano Growth Factor (MGF) Expression and Response to Multiple-Mechanical Stimulation after Biodegradable Stent Implantation
  • Abstract Stent implantation is the most effective method in the treatment of cardiovascular disease which always destroy the integrity of the vascular endothelium and the local mechanical environment at the stent segment was changed, especially the biodegradable stents [1]. In this study, 3D printed biodegradable poly (L-lactic acid) stents were implanted into SD rat abdominal aorta and the endothelialization, intimal hyperplasia, and MGF after stent implantation were studied. Besides, based on the MGF we explored the effects of mechanical stimulation on MGF express in vascular endothelial cells and smooth muscle cells, and also the effects of MGF with different concentrations on…
  • More
  •   Views:773       Downloads:135        Download PDF
  • Recent Progress in Medical Biomaterials
  • Abstract Guided tissue regeneration (GTR) is a technique that selectively guides cells to attach and proliferate towards an injured site to achieve tissue regeneration through a physical barrier membrane. In this review, we presented a brief overview of the development of GTR technology and GTR materials. Nowadays, new technologies such as electrospinning, nanotechnology, controlled release technique, and 3D printing have been introduced into the study of GTR materials. Resorbable membrane as GTR materials are available as alternatives to conventional non-resorbable membranes. Current GTR materials not only act as a physical barrier membrane but also as a scaffold to play a role…
  • More
  •   Views:790       Downloads:150        Download PDF
  • Mechano-Electric Feedback and Arrhythmogenic Current Generation in A Computational Model of Coupled Myocytes
  • Abstract Heterogeneous mechanical dyskinesis has been implicated in arrhythmogenic phenotypes. Strain-induced perturbations to cardiomyocyte electrophysiology (EP) may trigger arrhythmias via a variety of mechano-electric feedback (MEF) mechanisms. While the role of stretch-activated ionic currents (SACs) has been investigated intensively using computational models, experimental studies have shown that mechanical strain can also trigger intra- and inter-cellular calcium waves. To investigate whether the inherent strain dependence of myofilament calcium affinity may promote arrhythmogenic intra- and inter-cellular calcium waves under conditions of pathologic mechanical heterogeneity, we coupled a mathematical model of excitation-contraction coupling (ECC) in rabbit ventricular myocytes to a model of myofilament activation…
  • More
  •   Views:2519       Downloads:160        Download PDF
  • The Importance of Niches-Dimensionality in Regulating the Bone Marrow Hematopoietic Stem Progenitor Cells Pool
  • Abstract Research in stem cell biology relies on the knowledge of the cell microenvironment in vivo, known as “stem cell niche”, where stem cells are nurtured by the niche signals. Hematopoietic stem cells (HSCs) are capable of continuously generating and maintaining the body’s full immune and hematopoietic systems. In adult, a pool of hematopoietic cells, including HSCs, primarily reside in the bone marrow (BM) niches that plays critical roles on cell fate. Niche supporting cells, cytokines, extracellular matrix proteins and other biochemical cues associated with HSCs behaviors (quiescence, self-renewal, proliferation, differentiation, mobilization, homing, and apoptosis) has been revealed in quantity. Recently…
  • More
  •   Views:966       Downloads:142        Download PDF
  • Gene Expression Profiling of Human Hepatocytes Grown on Differing Substrate Stiffness
  • Abstract Objective: To study the effects of different substrate stiffness on human hepatocytes using RNA sequencing (RNA-Seq) technology. The stiffness was corresponding to physiology and pathology stiffness of liver tissues.
    Results: With the aid of RNA-Seq technology, our study characterizes the transcriptome of hepatocytes cultured on soft, moderate, stiff and plastic substrates. Compared to soft substrate, our RNA-Seq results revealed 1131 genes that were up-regulated and 2534 that were down-regulated on moderate substrate, 1370 genes that were up-regulated and 2677 down-regulated genes on stiff substrate. Functional enrichment analysis indicated that differentially expressed genes were associated with the regulation of actin…
  • More
  •   Views:959       Downloads:146        Download PDF
  • Effects of Three-Dimensional Stiffness on the Proliferation, Stemness And Invasion of Hepatic Cancer Stem Cells
  • Abstract Hepatocellular carcinoma (HCC) is the third most common cancer in the world. Previous studies have shown that hard matrix promotes the proliferation of liver tumor cells. However, the role of matrix stiffness on hepatic cancer stem cells (HCSCs) is still unclear. Three-dimensional hydrogels with different stiffness were used to mimic the normal liver tissue (4kPa) and cancerous liver tissue (26kPa) stiffness. The proliferation, stemness and invasion properties of HCSCs under 3D different stiffness were detected. METHOD: HSCSs were screened and cultured by enrichment method, and the effect of matrix stiffness on HCSCs was studied by three-dimensional culture of HCSCs in…
  • More
  •   Views:957       Downloads:147        Download PDF
  • Matrix Stiffness Promotes Hepatoma Cell Glycolysis and Migration Through YAP-Mediated Mechanotransduction
  • Abstract Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal malignancies worldwide. Increased matrix stiffness of extracellular matrix (ECM) is commonly associated with HCC. During tumour formation and expansion, increasing glucose metabolism is necessary for unrestricted growth of tumour cells. Yet, the correlation between matrix stiffness and glucose metabolism in the development of HCC remains unknown. In this study, we aim to investigate the effect of matrix stiffness on glucose metabolism and migration of MHCC97L and HepG2 hepatoma cells, and explore the mechanotransduction involved in this process. Polyacrylamide hydrogels with stiffness gradients of 6, 25, 54 kPa were produced…
  • More
  •   Views:768       Downloads:132        Download PDF
  • Quantitative Method for Biomechanical Evaluation of Bedding Comfortableness
  • Abstract Comfortable bedding is usually designed subjectively because of the difficulty in performing a quantitative evaluation. This paper proposes a quantitative evaluation method of comfortableness of beddings. The bedding shape determining how comfortable an individual may feel in using it depends on the body shape and normal posture of individuals. The internal physical load is expected to relate to the comfortableness of bedding. However, only a few quantitative discussions exist on the relation between the comfortableness of bedding and physical load. This study proposes a new evaluation method of physical load in a relaxed posture. The strain energy of muscles and…
  • More
  •   Views:779       Downloads:134        Download PDF
Displaying 21-30 on page 3 of 484. Per Page