Advanced Search
Displaying 7461-7470 on page 747 of 7787. Per Page  
  • Development and Characterization of the Midrib of Coconut Palm Leaf Reinforced Polyester Composite
  • Abstract In this paper, midrib of coconut palm leaves (MCL) was investigated for the purpose of development of natural fiber reinforced polymer matrix composites. A new natural fiber composite as MCL/polyester is developed by the hand lay-up method, and the material and mechanical properties of the fiber, matrix and composite materials were evaluated. The effect of fiber content on the tensile, flexural, impact, compressive strength and heat distortion temperature (HDT) was investigated. It was found that the MCL fiber had the maximum tensile strength, tensile modulus flexural strength, flexural modulus and Izod impact strength of 177.5MPa, 14.85GPa, 316.04MPa and 23.54GPa, 8.23KJ/m2
  • More
  •   Views:210       Downloads:316        Download PDF
  • Numerical Studies on Stratified Rock Failure Based on Digital Image Processing Technique at Mesoscale
  • Abstract This paper investigates the failure behaviors of stratified rocks under uniaxial compression using a digital image processing (DIP) based finite difference method (FDM). The two-dimensional (2D) mesostructure of stratified rocks, represented as the internal spatial distribution of two main rock materials (marble and greenschist), is first identified with the DIP technique. And then the binaryzation image information is used to generate the finite difference grid. Finally, the failure behaviors of stratified rock samples are simulated by FDM considering the inhomogeneity of rock materials. In the DIP, an image segmentation algorithm based on seeded region growing (SRG) is proposed, instead of…
  • More
  •   Views:184       Downloads:174        Download PDF
  • On Improving the Celebrated Paris’ Power Law for Fatigue, by Using Moving Least Squares
  • Abstract In this study, we propose to approximate the a-n relation as well as the da/dn-∆K relation, in fatigue crack propagation, by using the Moving Least Squares (MLS) method. This simple approach can avoid the internal inconsistencies caused by the celebrated Paris’ power law approximation of the da/dn-∆K relation, as well as the error caused by a simple numerical differentiation of the noisy data for a-n measurements in standard fatigue tests. Efficient, accurate and automatic simulations of fatigue crack propagation can, in general, be realized by using the currently developed MLS law as the “fatigue engine” [da/dn versus ∆K], and using…
  • More
  •   Views:197       Downloads:180        Download PDF
  • Wrinkling Analysis in a Film Bonded to a Compressible Compliant Substrate in Large Deformation
  • Abstract The buckling of a thin film on a compressible compliant substrate in large deformation is studied. A finite-deformation theory is developed to model the film and the substrate under different original strain-free configurations. The neo-Hookean constitutive relation is applied to describe the substrate. Through the perturbation analysis, the analytical solution for this highly nonlinear system is obtained. The buckling wave number, amplitude and critical condition are obtained. Comparing with the traditional linear model, the buckling amplitude decreases. The wave number increases and relates to the prestrain. With the increment of Poisson’s ratio of the substrate, the buckling wave number increases,…
  • More
  •   Views:198       Downloads:159        Download PDF
  • Bending, Free Vibration and Buckling Analysis of Functionally Graded Plates via Wavelet Finite Element Method
  • Abstract Following previous work, a wavelet finite element method is developed for bending, free vibration and buckling analysis of functionally graded (FG) plates based on Mindlin plate theory. The functionally graded material (FGM) properties are assumed to vary smoothly and continuously throughout the thickness of plate according to power law distribution of volume fraction of constituents. This article adopts scaling functions of two-dimensional tensor product BSWI to form shape functions. Then two-dimensional FGM BSWI element is constructed based on Mindlin plate theory by means of two-dimensional tensor product BSWI. The proposed two-dimensional FGM BSWI element possesses the advantages of high convergence,…
  • More
  •   Views:201       Downloads:170        Download PDF
  • Computing the Electric and Magnetic Green’s Functions in General Electrically Gyrotropic Media
  • Abstract A method for an approximate computation of the electric and magnetic Green’s functions for the time-harmonic Maxwell’s equations in the general electrically gyrotropic materials is proposed. This method is based on the Fourier transform meta-approach: the equations for electric and magnetic fields are written in terms of images of the Fourier transform with respect to space variables and as a result of it the linear algebraic systems for finding Fourier images of the columns of the Green’s functions are obtained. The explicit formulas for the solutions of the obtained systems have been found. Finally, elements of the Green’s functions are…
  • More
  •   Views:186       Downloads:177        Download PDF
  • Sensitivity of Dynamic Response of a Simply Supported Functionally Graded Magneto-electro-elastic Plate to its Elastic Parameters
  • Abstract Dynamic response sensitivity of a simply supported functionally graded magneto-electro-elastic plates have been studied by combining analytical method with finite element method. The functionally graded material parameters are assumed to obey exponential law in the thickness direction. A series solution of double trigonometric function agreed with the simply supported boundary condition is adopted in the plane of the plate and finite element method is used across the thickness of the plate. The finite element model is established based on energy variational principle. The coupled electromagnetic dynamic characteristics of a simply supported functionally graded magneto- electro-elastic plate are decided by its…
  • More
  •   Views:191       Downloads:165        Download PDF
  • Thermo-elastic Stresses in a Functional Graded Material Under Thermal Loading, Pure Bending and Thermo-mechanical Coupling
  • Abstract Analytical expressions have been derived for the through thickness stresses of a Functional graded materials (FGMs) thin plate subjected to thermal loading, pure bending and thermo-mechanical coupling, respectively. The structure is comprised of a metallic layer, a ceramic layer and a functional graded layer. Continuous gradation of the volume fraction in the FGM layer is modeled in the form of an "m" power polynomial of the coordinate axis in thickness direction of the plate. Numerical scheme of discretizing the continuous FGM layer with different graded distributions such as linear (m=1), quadratic (m=2) and square root (m=0.5) has been developed by…
  • More
  •   Views:188       Downloads:156        Download PDF
  • Measurement Techniques of Torsional Vibration in Rotating Shafts
  • Abstract The measurement of torsional vibration is a common practice in certain fields, such as the automotive industry, power generation, or large alternative engines. Similarly, functional analysis and diagnostic of other equipment, which are not traditionally measured, can benefit greatly from this type of measurement. This review discusses some techniques used in industry to measure torsional vibration, briefly describing the types of sensors used and the transduction procedures. Choosing the most appropriate technique in each case not only responds to economic reasons, but also to other conditions of the given equipment, such as its design, coupled machines or devices, functional status…
  • More
  •   Views:206       Downloads:167        Download PDF
  • Prediction of Fracture Parameters of High Strength and Ultra-High Strength Concrete Beams using Minimax Probability Machine Regression and Extreme Learning Machine
  • Abstract This paper deals with the development of models for prediction of facture parameters, namely, fracture energy and ultimate load of high strength and ultra high strength concrete based on Minimax Probability Machine Regression (MPMR) and Extreme Learning Machine (ELM). MPMR is developed based on Minimax Probability Machine Classification (MPMC). ELM is the modified version of Single Hidden Layer Feed Foreword Network (SLFN). MPMR and ELM has been used as regression techniques. Mathematical models have been developed in the form of relation between several input variables such as beam dimensions, water cement ratio, compressive strength, split tensile strength, notch depth, and…
  • More
  •   Views:261       Downloads:177        Download PDF
Displaying 7461-7470 on page 747 of 7787. Per Page