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ABSTRACT

In the contemporary era, the global expansion of electrical grids is propelled by various renewable energy sources
(RESs). Efficient integration of stochastic RESs and optimal power flow (OPF) management are critical for network
optimization. This study introduces an innovative solution, the Gaussian Bare-Bones Levy Cheetah Optimizer
(GBBLCO), addressing OPF challenges in power generation systems with stochastic RESs. The primary objective is
to minimize the total operating costs of RESs, considering four functions: overall operating costs, voltage deviation
management, emissions reduction, voltage stability index (VSI) and power loss mitigation. Additionally, a carbon
tax is included in the objective function to reduce carbon emissions. Thorough scrutiny, using modified IEEE
30-bus and IEEE 118-bus systems, validates GBBLCO’s superior performance in achieving optimal solutions.
Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios: total cost with valve point effects,
total cost with emission and carbon tax, total cost with prohibited operating zones, active power loss optimization,
voltage deviation optimization and enhancing voltage stability index (VSI). GBBLCO outperforms conventional
techniques in each scenario, showcasing rapid convergence and superior solution quality. Notably, GBBLCO
navigates complexities introduced by valve point effects, adapts to environmental constraints, optimizes costs
while considering prohibited operating zones, minimizes active power losses, and optimizes voltage deviation
by enhancing the voltage stability index (VSI) effectively. This research significantly contributes to advancing
OPF, emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local
minima. GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,
offering a promising solution for the evolving needs of renewable energy-integrated power grids.
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1 Introduction
1.1 Background and Motivation

The escalating global demand for energy, driven by industrialization and population growth, has
necessitated a transition towards sustainable energy practices. This transition is further fueled by the
deregulation of electricity markets and a growing imperative to curtail greenhouse gas emissions.
Renewable energy sources (RESs) have emerged as a pivotal solution, offering cleaner alternatives
to traditional fossil fuels. Over recent decades, technological advancements have significantly reduced
the installation costs associated with RESs, making them economically viable and environmentally
sustainable [1].

In this context, wind turbine (WT) generators and photovoltaic (PV) generators stand out as key
contributors to the renewable energy landscape. Projections suggest that the output power from these
sources will soon become more cost-effective than that obtained from fossil fuels, marking a paradigm
shift in power generation economics [1].

1.2 Literature Review
The challenge of Optimal Power Flow (OPF) is crucial for ensuring the economic efficiency and

stable functioning of power systems. Initially conceptualized in 1962, OPF involves adjusting control
variables in a large-scale, nonlinear, and nonconvex static problem [2]. With conventional OPF tailored
for fossil fuel-based stations, the surge in renewable energy adoption has led to a dynamic landscape
of optimization techniques [3,4], mainly favoring metaheuristic population-based methods.

A notable advancement is the Developed Grey Wolf Optimizer (DGWO) [5], refining Grey Wolf
Optimization (GWO) to mitigate stagnation at local optima. Verified on the IEEE 30-bus test system,
DGWO demonstrates superior performance in tackling the OPF problem when juxtaposed with other
metaheuristic techniques. Ullah et al. [6] introduced Phasor Particle Swarm Optimization (PPSO) and
Gravitational Search Algorithm (GSA) (PPSOGSA), a hybrid solution for OPF in wind and solar
energy systems, presenting a comprehensive approach to overcome challenges associated with renew-
able energy integration. Elattar [7] integrated stochastic wind energy into the OPF problem, employing
Modified Moth Swarm Optimization (MMSO) to enhance efficiency. The Modified Bacteria Foraging
Algorithm (MBFA) has been introduced in [8], focusing on minimizing operational costs, reducing
losses, and improving voltage security. Man-Im et al. [9] further developed Particle Swarm Opti-
mization (PSO) to tackle multi-objective Optimal Power Flow (OPF) issues in wind energy systems.
Salkuti [10] has proposed Glowworm Swarm Optimization (GSO) for a multi-objective OPF problem
in a wind energy-integrated system. The landscape includes hybrid approaches like the optimization
algorithms reported in [11], proving effective against other algorithms. Kathiravan et al. [12] employed
the Flower Pollination Algorithm (FPA) for OPF in wind, thermal, and solar energy systems. Modified
Artificial Bee Colony (MABC) has been introduced in [13] with a fuzzy-based approach for discrete
OPF problems. Hybrid PSO-GWO [14] exceled in OPF problem-solving. Duman et al. [15] used
Differential Evolutionary PSO (DEPSO) for OPF with controllable wind turbine and photovoltaic
systems.

The array of approaches includes Multi-Objective Electromagnetism-Like Algorithm (MOELA)
[16], Adaptive Gaussian TLBO (AGTLBO) [17], Chaotic Invasive Weed Optimization Algorithms
(CIWOs) [18], and various iterations of multi-objective evolutionary algorithms [19]. MOALA [20],
TLBO enhanced with Lévy mutation (LTLBO) [21], Constrained Multi-Objective Population External
Optimization Algorithm (CMOPEO) [22], Slime Mould Algorithm (SMA) [23], Hybrid Optimizer
via Genetic Algorithm and Teaching-Learning-Based Optimization (G-TLBO) [24], Hybrid Modified
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Imperialist Competitive Algorithm and Sequential Quadratic Programming Algorithm (HMICA-
SQP) [25], BAT search algorithm [26], Developed Turbulent Flow of a Water-Based Optimizer
(TFWO) [27], Multi-Objective Mayfly Algorithm (MOMA) [28], Bird Swarm Algorithm (BSA) [29],
and Hybrid Differential Evolution and Symbiotic Organisms Search (DE-SOS) [30] contribute to the
evolving toolkit for OPF challenges.

Furthermore, a hybrid multi-objective evolutionary algorithm has been proposed for solving
constrained mixed-integer multi-objective Optimal Power Flow (OPF) in this article. The algorithm
addresses the challenges of integrating Renewable Energy Sources (RESs) into power systems by
considering both continuous and discrete decision variables [31]. Insights into the utilization and
effectiveness of the whale migration algorithm (WMO) in optimizing power flow have been provided,
contributing to the broader understanding of optimization techniques in power systems [32]. An
extensive study utilizing beetle swarm optimization (BSO) to optimize single and multiple objectives
in various OPF problems has been conducted, providing insights into its performance in addressing
different power flow optimization scenarios [33]. The study has addressed the OPF of hybrid wind/so-
lar/thermal energy integrated power systems, introducing a novel and efficient search optimization
algorithm (modified turbulent flow of water-based optimization) for achieving optimal solutions.
Simulations and comparisons have demonstrated the algorithm’s effectiveness in OPF while consid-
ering economic and environmental factors [34]. A multi-dimensional energy management approach
utilizing an OPF model has been presented, incorporating an improved quasi-reflection jellyfish
optimization (QRJFO) to OPF in complex energy systems. Simulation results have demonstrated
the effectiveness of the algorithm in achieving optimal energy management and enhancing system
performance [35]. A two-archive Harris hawks optimization (HHO) has been presented for efficiently
solving many-objective OPF problems. The research has showcased the algorithm’s effectiveness
in handling complex OPF challenges with many objectives through simulations and comparisons
[36]. The study has introduced a multi-objective solution for OPF utilizing the Twin-Delayed Deep
Deterministic (TD3) reinforcement learning algorithm. The research has demonstrated the capabilities
of the TD3 method through simulations and comparative analyses [37]. A distributed approach for
solving the AC–DC multi-objective OPF has been presented [38]. An improved cross-entropy method
for solving OPF has been introduced to enhance convergence and solution quality in optimizing power
systems [39]. The complexities of multi-objective optimization in power systems have been addressed,
offering a distributed solution approach. Simulations and results have highlighted the effectiveness
of the proposed method in achieving OPF in AC–DC systems [38]. The application of chaos-based
chaotic invasive weed optimization (CIWO) techniques for solving environmental OPF problems in
power systems has been explored [40]. Addressing the challenges of hybrid renewable energy systems,
Monte Carlo simulation combined with a clustering technique has been utilized to solve probabilistic
OPF, considering uncertainties in RESs and enhancing the accuracy of OPF [41]. An enhanced
version of NSGA-III (Non-Dominated Sorting Genetic Algorithm III) integrating an eliminating
strategy and dynamic constraint relaxation mechanism for solving many-objective OPF has been
introduced [42]. A giant trevally optimization (GTO) has been introduced to handle probabilistic
OPF in power systems with renewable energy uncertainty [43]. An improved MOEA/D algorithm
has been proposed to enhance the efficiency and effectiveness of solving multi-objective optimization
challenges in OPF [44]. The integration of advanced incremental PSO (AIPSO) in OPF for enhanced
energy efficiency in modern power systems has been explored [45]. The Gaussian bare-bones Levy
circulatory system-based optimization (GBLCSBO) has been introduced for OPF, particularly in the
presence of RESs, focusing on enhancing power flow solutions in the context of RESs integration
[46]. The application of the Harris hawks optimization (HHO) in addressing single-objective OPF has
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been explored [47]. The Grey Wolf Optimizer (GWO) has been employed to address single-objective
functions in OPF, demonstrating its applicability and efficiency through simulations and comparisons
[48]. A multi-objective OPF approach incorporating an emission index using the firefly algorithm (FA)
has been introduced [49]. The multi-objective OPF of power systems has been addressed, employing
an enhanced remora optimization (IRO) to tackle the complex challenges of OPF while considering
multiple objectives [50].

In summary, the dynamic landscape of optimization techniques showcases innovative solutions
and hybrid approaches, emphasizing the collective effort to address the evolving dynamics of power
system optimization.

1.3 Contributions
In our paper, we address the inherent weaknesses of metaheuristic population-based techniques in

solving optimization problems, especially concerning renewable energy integration in power systems.
These weaknesses include premature convergence, limited exploration capabilities, scalability issues
with larger and more complex search spaces, and sensitivity to parameter settings requiring extensive
tuning efforts. Additionally, challenges such as handling constraints effectively, lack of adaptability
to evolving problem characteristics, and difficulty in maintaining solution diversity are highlighted.
By recognizing these limitations, we introduce the Gaussian Bare-Bones Levy Cheetah Optimizer
(GBBLCO) as a significant advancement in the field of OPF optimization. The motivation behind
GBBLCO arises from a meticulous analysis of existing techniques and an understanding of the specific
challenges posed by renewable energy integration, particularly in solar and wind power systems.
Through a comprehensive examination of weaknesses associated with metaheuristic population-based
techniques, we aim to fortify the foundations of GBBLCO. By leveraging principles from the Bare-
Bones Cheetah Optimizer (CO) and integrating Gaussian and Levy flight enhancements, GBBLCO
addresses the identified limitations of existing algorithms, enriching solution diversity and mitigating
the risk of converging to local optima. Our comparative evaluation demonstrates GBBLCO’s superior
performance, substantiating its efficacy in delivering optimal OPF solutions for power systems with
renewable energy sources. Furthermore, our analysis delves into the unique challenges posed by solar
and wind power systems, elucidating how GBBLCO is uniquely suited to solve them through its
adaptive search strategies and robust optimization framework. Overall, our contributions establish
GBBLCO as a pioneering solution poised to advance the state-of-the-art in OPF optimization,
particularly in the context of modern power systems integrating renewable energy.

Furthermore, the introduction of GBBLCO is grounded in a comparative framework, where
benchmark algorithms, including CO [51], Moth-Flame Optimization (MFO) [52], Elephant Herding
Optimization (EHO) [53], Whale Optimization Algorithm (WOA) [54], and Bare-Bones PSO (BBPSO)
[55], are assessed. This comparative evaluation serves to empirically demonstrate the superior perfor-
mance of GBBLCO, substantiating its efficacy in delivering optimal OPF solutions for power systems
with renewable energy sources.

1.4 Paper Structure
The subsequent sections of the paper provide detailed insights into the OPF problem formulation,

wind-solar power models, the original CO algorithm, and the proposed GBBLCO method. Addition-
ally, the experimental study settings, benchmarks, and standards are comprehensively detailed. Finally,
the conclusion section summarizes key findings and suggests avenues for future research.
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2 Formulation of OPF Including Wind-Solar Energy Systems

The OPF problem assumes a central role in optimizing control parameters for economic and
stable power system operation. This study is dedicated to integrating wind and solar energy into the
classical OPF framework, seeking to minimize total operating costs, encompassing the fuel expenses
of conventional thermal generators.

2.1 Objective Function and Variables
The overarching objective function Z denoted as f (X , Y), governs the optimization landscape

of the OPF problem. This function encapsulates a comprehensive representation of the interplay
between the decision variables X and Y , intricately woven into the fabric of the power system’s
operational dynamics. The selection of these variables is pivotal in shaping the efficacy and efficiency
of the optimization process. As we delve into the subsequent sections, a nuanced exploration of
the multifaceted components constituting the objective function and the associated variables will be
undertaken. This comprehensive analysis aims to shed light on the intricate optimization mechanisms
deployed to enhance the economic and stable operation of power systems.

The overarching objective function, denoted as Z, is expressed as:

Z = f (X , Y) (1)

This function represents a comprehensive interplay between decision variables X and Y , governing
the optimization landscape intricately woven into the power system’s operational dynamics. The
objective is to optimize the system for economic and stable operation, and the specific definition of
Z involves the active power of the slack generator (Pslack), voltage values of PQ buses (VL), reactive
powers of wind power, thermal generating units, and the solar system (QWind, QSolar, and QThermal), as well
as the apparent power of transmission lines (SL). Independent variables Y include the active powers
of solar (PV) systems and thermal generating units (PPVS and PTh), the voltage values of all generator
buses (VG), and the active power of wind farms (PWS). The formulation also considers the number of
wind farms, thermal generating units, solar energy systems, transmission lines, and PQ buses (NW ,
NTHG, NPV , NTL, and NPQ).

2.2 Mathematical Modeling
2.2.1 Fuel Cost Modeling for Thermal Generating Units

In the context of the fuel cost model for thermal generating (TH) units, the classical fuel cost
function is mathematically expressed as follows:

F(PTh) =
∑NTHG

i=1
aiP2

Th,i + biPTh,i + ci (2)

Here, PTh represents the total active power output of thermal generating units, NTHG is the
total number of thermal generating units, and ai, bi, ci are coefficients associated with each unit. The
function captures the relationship between the total active power output and the corresponding fuel
cost, incorporating quadratic and linear terms along with constant coefficients for each unit. This
model is fundamental for assessing the economic aspects of thermal generating units in the power
system.

Moreover, when considering the valve point effect, the term
∣∣pi × sin

(
ri ×

[
Pmin

Th,i − PTh,i

])∣∣ can be
seamlessly integrated into the equation. Here, pi represents the valve point coefficient, ri is the valve
point parameter, and Pmin

Th,i denotes the minimum power output of the i-th thermal generating unit. This
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additional term captures the impact of valve point effects on the fuel cost, offering a more nuanced
understanding of the economic dynamics in the context of thermal power generation.

2.2.2 Modeling Emissions from Thermal Generating Units

In the scope of this investigation, the total emission value is expressed by the following equation:

E (PTh) =
NTHG∑

i=1

(
σi + βiPThi + τiP2

Thi

)
× 0.01 + ωie

(
μiPThi

)
(3)

Here, the terms σi, βi, τi, ωi, and μi correspond to the emission coefficients, each contributing
to the comprehensive emission model. This refined formulation provides a thorough insight into the
environmental impact associated with the operation of thermal generating units.

2.2.3 Modeling Prohibited Operating Zones in Thermal Generating Units

In this subsection, we delve into the intricacies of prohibited operating zones (POZs) concerning
the optimal operation of thermal generating units. The concept involves defining and quantifying
limits to ensure the efficient and reliable functioning of these units. A thermal generating unit with
prohibited operating zones (POZs) is identified as:

Ui =
∑Mi

y=1

[
PTh − (

πy,i − πy−1,i

)]
.
(
πy,i − πy−1,i

)
(4)

The parameter Mi signifies the total number of POZs, while πy−1,i and πy,i represent the lower and
upper bounds of the yth POZ for the ith generator. Understanding and managing these prohibited
operating zones are crucial for achieving optimal performance and stability in power systems with
thermal generating units.

2.2.4 Cost Modeling for Wind and PV Energy Systems

The cost model for wind energy is represented through its direct cost coefficient, denoted as θWS,i:

CWS,i = θWS,iPWS,i (5)

Similarly, the direct cost model for the photovoltaic power system is expressed by the correspond-
ing direct cost coefficient, θPVS,i, as follows:

CPVS,i = θPVS,iPPVS,i (6)

2.2.5 Cost Models Accounting for Uncertainty in Wind and PV Energy Systems

To capture the inherent uncertainties in renewable energy sources (RESs), the following models
are employed.

• For wind power systems:

CUWS,i = δUWS,iPWS,i − εUWS,iPWSrated,i (7)

where δUWS,i,εUWS,i are overestimation and underestimation cost coefficients. PWS,i, PWSrated,i are rated
and available powers of the ith wind power system.
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• For PV energy systems:

CUPVS,i = δUPVS,iPPVS,i − εUPVS,iPPVSrated,i (8)

where

δUPVS,i, εUPVS,i are overestimation and underestimation cost coefficients.

PPVS,i, PPVSrated,i are rated and available powers of the ith PV energy system.

2.2.6 Active Power Loss

The objective function of the active power losses can be formulated as follows:

ZLoss =
∑NTL

s=1
Ks

(
αi − αj

)
(9)

where Ks represents the conductance of the sth transmission line between buses i and j. αi − αj is the
difference in voltage angles of buses i and j.

2.2.7 Voltage Deviation (V.D.)

The voltage deviation value in the proposed OPF problem is calculated as follows:

ZV.D. =
∑Nbus

i=1
|Vi − 1| (10)

2.2.8 Voltage Stability Index (VSI)

The integration of renewable energy sources (RESs) into electrical grids has emerged as a pivotal
strategy in addressing energy sustainability and environmental concerns. Among RESs, wind power
generation has witnessed significant growth and adoption worldwide due to its abundant resource
availability and technological advancements. However, the inherent variability and unpredictability of
wind power pose challenges to the stability and reliability of electrical grids.

The VSI formulation and the objective function in OPF have been calculated as follows [27,56,57]:

Lj = 1 −
∑Ng

i=1

(− [YLL]−1 [YLG]
) Vi

Vj

�
(
θij + δi − δj

)
(11)

VSI = Min(Lj) : j = 1, 2, . . . , Nbus (12)

where YLL YLG indicate sub-matrices of Y-Bus matrix. δi and δj represent the voltage phase angles of
the buses i and j, respectively.

2.3 Constraints
2.3.1 Equality Constraints

Equality constraints include active and reactive powers, voltage magnitudes, and angle differences.

2.3.2 Inequality Constraints

Inequality constraints encompass both maximum and minimum bounds on active and reactive
power values, as well as voltage magnitudes.
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2.4 Fitness Function for SCOPF
The fitness function for the Security Constrained OPF (SCOPF) problem incorporates penalty

coefficients:

SCOPF = Z (.) + Penalty_terms (13)

Here Z (.) is the considered objective function(s), and Penalty_terms corresponds to the penalty
terms of the constraints. This comprehensive formulation and optimization approach contributes to
advancing OPF methodologies, particularly in the context of integrating RESs into modern power
systems.

In our study, we aim to tackle various objectives in electrical grid optimization, such as reducing
operational costs, managing voltage fluctuations, and minimizing pollutants and power losses. To
balance these competing goals, we employ a weighted sum approach for multi-objective optimization.
These weightings, crucial for the algorithm’s performance, have been extensively researched and
validated in prior studies. In our research, we maintain consistency with these established weightings
for fair comparison with previous results. Through careful consideration and experimental validation,
our study demonstrates the effectiveness of our approach in achieving a well-balanced and efficient
optimization of the electrical grid.

3 Wind-PV Uncertainty and Power Models

Within the realm of power models and wind-PV uncertainty, the representation of wind speed
distribution utilizes the Weibull probability density function (PDF). This mathematical expression is
defined as:

f (vw; ξ , ψ) = ξ

ψ

(
vw

ψ

)ξ−1

e−(vw/ψ)ξ (14)

incorporates parameters vw, ξ and ψ denoting the wind speed, shape and scale factors, respectively.
This Weibull PDF serves as a fundamental tool for characterizing the probability distribution of wind
speeds. The subsequent analysis and utilization of this distribution contribute to a comprehensive
understanding of the stochastic nature inherent in wind power systems.

Fig. 1 displays the outcomes of the Weibull fitting concerning wind frequency distributions derived
through an 8000-iteration Monte Carlo simulation [3,58]. The wind power system’s power output is
determined as follows:

Pwind =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 vw < vwin

pwr
(

vw − vwin

vwr − vwin

)3

vwin ≤ vw < vwr

pwr vwr ≤ vw < vwout

0 vw ≥ vwout

(15)

where pwr, vwout, vwin, and vwr are, respectively, the rated power, cut-out, cut-in, and rated wind speeds.
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Figure 1: Weibull fitting of WPG’s distributions at bus 5 (a), and bus 11 (b)

Table 1 provides a detailed overview of the parameters associated with the probability density
function (PDF) for both wind and photovoltaic (PV) energy systems. This tabulated information
encompasses critical elements that characterize the probabilistic behavior of these energy sources,
contributing essential insights for system analysis and optimization. For each turbine, the chosen wind
speeds and rated power values are vwin = 3 m/s, vwr = 16 m/s, vwout = 25 m/s, and 3 MW, respectively
[3,58].

Table 1: Parameters of the probability density functions for wind and solar energy systems

System Total rated
power (MW)

Number of
turbines

Weibull
parameters

Lognormal
parameters

Bus

Wind power 60 20 ψ = 10, ξ = 2 – 11
Solar power 50 – – Ω = 0.6, ζ = 6 13
Wind power 75 25 ψ = 9, ξ = 2 – 5

The power output of the PV energy systems, which is contingent on solar irradiation, is modeled
using the Lognormal PDF. The mathematical representation and output power of the solar system are
expressed as follows:
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f (x; ζ , Ω) = 1

xΩ
√

2π
e−(ln(x)−ζ )2/(2Ω2) (16)

PPV = Gpv × eGpvstdZ+Ppvrate (17)

Gpvstd, Gpv, and Ppvrate are the standard solar irradiance, probability value, and rated power of the
solar system, respectively. The Lognormal PDF parameters are denoted by Ω and ζ for standard
deviation and mean, respectively. The solar irradiance, represented by x, serves as the focus of this
study. Z stands as the random variable in this context.

Fig. 2 presents lognormal Probability Density Functions (PDFs) for solar irradiance and pho-
tovoltaic (PV) power generation at bus 13. Fig. 2a displays the PDF of solar irradiance, offering
insights into the likelihood of different irradiance levels at the specific location. Fig. 2b illustrates
the PDF for PV power generation, providing a graphical representation of the probability distribution
associated with varying levels of PV output. These distributions are essential for understanding the
intermittent nature of solar energy and optimizing power systems with renewable sources, aiding in
decision-making for efficient energy management.

Figure 2: The lognormal PDF of solar irradiance (a), and PV power generation (b) at bus 13
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4 The Proposed Algorithm
4.1 Cheetah Optimizer (CO)

The Cheetah Optimizer (CO) algorithm employs intelligent hunting strategies throughout its
iterative hunting periods. The primary phases of CO are outlined as follows [51]:

4.2 Search Strategy
Cheetahs adopt two distinct methods to locate prey during the hunting process. First, they

may scan the environment while stationary or actively patrol the area. The choice between these
modes depends on factors such as prey density, environmental coverage, and the cheetahs’ conditions.
Mathematically, the cheetah’s position X t

i,j in arrangement j is updated using a random search equation:

X t+1
i,j = X t

i,j + r̂−1
i,j .αt

i,j (18)

In the given context, t signifies the ongoing hunting period, while T denotes the maximum
duration allocated for hunting. The terms r̂−1

i,j and αt
i,j stand for the randomization parameter and

step length, respectively. The randomization component adheres to a normal distribution, and the
adjustment of αt

i,j is contingent on the spatial separation between cheetahs.

4.3 Sit-and-Wait Strategy
When prey is within sight during the search mode, cheetahs may choose to remain stationary and

wait for the prey to approach. This strategy aims to prevent the prey from escaping due to the cheetah’s
movement:

X t+1
i,j = X t

i,j (19)

This approach enhances hunting success and avoids premature convergence by not simultaneously
changing all cheetahs in each group.

4.4 Attack Strategy
In the assault phase, cheetahs harness their speed and agility to chase down prey. The recalibrated

position of a cheetah in attack mode hinges on the current location of the prey:

X t+1
i,j = X t

B,j + ři,j.β t
i,j (20)

In this context, X t
B,j denotes the present location of the prey in arrangement j. The factors ři,j and

β t
i,j come into play as the turning and interaction elements, respectively. The turning factor β t

i,j embodies
the interplay among cheetahs, while ři,j injects randomness, simulating the abrupt turns characteristic
of the capturing mode.

In this visual representation, the Cheetah Optimizer (CO) algorithm mimics the hunting strategies
of cheetahs during the optimization process, as shown in Fig. 3. The figure depicts three key phases.
The first cheetah (X 1) is engaged in the search strategy. It actively patrols the environment, scanning for
prey. Arrows illustrate its adaptability, choosing between active patrolling and standing depending on
the prey’s condition. The second cheetah (X 2) adopts the sit-and-wait strategy. Positioned strategically,
it lies in wait for the prey (green star, XB). This strategy enhances the likelihood of capturing the
prey without alerting it. The third cheetah (X 3) transitions into the attack strategy. It uses speed and
flexibility to pursue the prey (X B). Arrows show the rapid pursuit, and adjustments in direction are
made to intercept the prey and block its escape route. Fig. 3 encapsulates the dynamic and adaptive
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nature of the CO algorithm, mirroring the versatile hunting behaviors of cheetahs. The strategies
seamlessly transition in a continuous loop, optimizing the search for the best solution.

Figure 3: Cheetah hunting strategies

For the complete set of assumptions and the detailed CO algorithm, refer to the pseudo code
provided in Algorithm 1.

Algorithm 1 : Original Cheetah Optimizer (CO)
1: function CheetahOptimizer(MaxIt, n)
2: InitializePopulation()
3: EvaluateFitness()
4: leader position = FindBestSolution()
5: prey position = leader position
6: t=1
7: it = 1
8: while it ≤ MaxIt do
9: selected population = SelectRandomPopulation(n)
10: for cheetah in selected population do
11: for arrangement = 1: D do
12: Calculate Parameters
13: if r2 ≤ r3 then
14: if H ≥ r4 then
15: Update Position Using Eq. (17)
16: else
17: Update Position Using Eq. (15)
18: end if
19: else
20: Update Position Using Eq. (16)
21: end if
22: Update Cheetah Position
23: end for
24: end for

(Continued)
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Algorithm 1 (continued)
25: t=t+1
26: if t > rand × T and Leader Position Doesn’t Change then
27: Substitute Position with Prey
28: end if
29: if t > rand × T and Leader Position Doesn’t Change then
30: Back To Home Strategy
31: t=1
32: end if
33: it = it + 1
34: end while
35: best solution = FindBestSolution()
36: return best solution
37: end function

4.5 Gaussian Bare-Bones Levy Cheetah Optimizer (GBBLCO)
The GBBLCO algorithm introduces enhancements inspired by both Bare-Bones Particle Swarm

Optimization (BBPSO) and Levy flights, creating a dynamic and versatile optimization approach [41].

4.5.1 Bare-Bones PSO (BBPSO)

Originating from Particle Swarm Optimization (PSO), BBPSO refines the convergence behavior
by eliminating the velocity term. The position update is governed by the following equation [59,60]:

X t+1
j = X t

j + N(μ, σ) · rand j(0, 1) · Pbestt + Gbestt

2
(21)

where N(μ, σ) represents a Gaussian distribution with mean μ and standard deviation σ , and
rand j(0, 1) is a random value within [0,1] for the j-th dimension.

4.5.2 Levy-Flight

Incorporating the Levy-flight characteristics, the algorithm introduces a new Levy-flight CO
(LCO) mechanism. This is achieved by randomization via Levy flights with a randomization param-
eter C, utilizing the following equation:

X t+1
j = X t

j + α.Levy (22)

The Levy is defined as [44]:

Levy = 1

(rand1/β
)

· rand j(0, 1) (23)

where β = 1.5 and α = 0.001.

4.5.3 Mathematical Model of GBBLCO

Expanding on the search strategies observed in BBPSO, GBBLCO integrates Gaussian sampling
as a refined exploration and exploitation technique. The novel search, sit-and-wait, and bare-bones
attack strategies are outlined as follows:
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• New Search Strategy:

X t+1
i,j = X t

i,j + ri,j ∗ αt
i,j + αsign

[
rand − 1

2

]
⊕ Levy (24)

• New Sit-and-Wait Strategy:

X t+1
i,j =

⎧⎨
⎩

X t
B,j + αsign

[
rand − 1

2

]
⊕ Levy, rand ≥ 0.99

X t
i,j otherwise.

(25)

• New Bare-Bones Attack Strategy:

X t+1
i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N
(

X t
i,j + X t

k,j

2
,
∣∣X t

i,j − X t
k,j

∣∣) + αsign
[

rand − 1
2

]
⊕ Levy, rand > 0.85

N
(

X t
i,j + X t

B,j

2
,
∣∣X t

i,j − X t
B,j

∣∣) + αsign
[
rand − 1

2

] ⊕ Levy, rand < 0.15

X t
B,j + ri,j ∗ β t

i,j + αsign
[

rand − 1
2

]
⊕ Levy, otherwise.

(26)

The proposed GBBLCO integrates several enhancements that could potentially address the local
minima issues encountered by the original CO in optimizing power flow problems:

1. Enhanced Exploration: GBBLCO introduces Gaussian sampling as part of its search strategy,
allowing for a more robust exploration of the search space. This enhanced exploration
capability can help the algorithm escape local minima traps by enabling it to explore a wider
range of solutions.

2. Diverse Search Strategies: GBBLCO incorporates multiple search strategies, including a new
sit-and-wait strategy and a bare-bones attack strategy. By diversifying its search approach,
GBBLCO can effectively explore different regions of the solution space, reducing the likelihood
of getting stuck in local minima.

3. Levy Flights: By incorporating Levy flights into its mechanism, GBBLCO introduces a level of
randomness that can facilitate escape from local optima. Levy flights enable the algorithm to
make large jumps in the search space, potentially helping it overcome local minima by exploring
new regions more efficiently.

4. Adaptive Parameter Tuning: GBBLCO adjusts its parameters dynamically during the opti-
mization process, allowing it to adapt to changes in the landscape of the solution space. This
adaptability can help the algorithm navigate around local minima by adjusting its search
behavior accordingly.

Overall, the combination of enhanced exploration, diverse search strategies, incorporation of Levy
flights, and adaptive parameter tuning in GBBLCO provides a more robust framework for tackling
local minima issues compared to the original CO algorithm.

The flowchart depicted in Fig. 4 delineates the key stages and processes of the proposed algorithm,
the Gaussian Bare-Bones Levy Cheetah Optimizer (GBBLCO). By incorporating enhancements
from the Bare-Bones Cheetah Optimizer (CO) and integrating Gaussian and Levy flight strategies,
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GBBLCO emerges as a robust and adaptive algorithmic framework. The flowchart visually guides
through the algorithmic steps, showcasing the innovative features that collectively contribute to
GBBLCO’s efficacy in addressing optimal power flow challenges in electrical networks with renewable
energy sources.

Figure 4: Flowchart of the proposed GBBLCO algorithm
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5 Simulation Results: Comprehensive Analysis of Diverse OPF Scenarios
5.1 Experimental Setup and System Characteristics

The basic CO, MFO, EHO, WOA, BBPSO, and GBBLCO methods were studied on the IEEE
30-bus test system, as demonstrated in Fig. 5, to solve OPF problem involving wind and solar energy
systems. The test system comprises 30 buses and 41 branches, with three thermal generating units
located at buses 1, 2, and 8. Additionally, there is one swing generator at bus 1, two wind generators
at buses 5 and 11, and a solar energy system at bus 13. The system also includes four transformers
at branches 11, 12, 15, and 36, as well as two shunt capacitor banks at buses 10 and 24. A total
of 11 control variables are employed, covering thermal, wind, and solar generating systems, along
with the voltages of generator buses. The system’s total active and reactive loads are 283.4 MW and
126.2 MVAR, respectively. The PQ bus voltage limits are set within the range of [0.95–1.05] per unit.
These characteristics, as detailed in the reference [61], form the basis for the experimental setup and
evaluation of the proposed optimization algorithm.

Figure 5: The IEEE 30-bus test system
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Also, the control parameters of the optimization algorithms have been taken from references and
given in Table 2. The system parameters of the IEEE 30-bus test system were taken from references
[3,15], and shown in Table 3.

Table 2: Optimization algorithm control parameters

Algorithms Control parameters

MFO Moth-flame number = 60
a (The convergence constant) [−2 : −1]
b (Spiral factor) = 1

BBPSO Particles number = 60
GBBLCO Population size = 60

αt
i,j = 0.001 × t/T

α = 0.001, and λ = 1.5
WOA Whales number = 60

a variable decrease linearly from 2 to 0 (Default)
a2 linearly decreases from −1 to −2 (Default)

EHO Elephants number = 60
Clans number = 5
Kept elephants’ number = 2
The scale factor α = 0.5
The scale factor β = 0.1

CO Population size = 60
αt

i,j = 0.001 × t/T

Table 3: Generator cost and emission coefficients for the IEEE 30-bus test system

Bus no. a b c r p β σ ω τ μ POZs Thermal generator
1 0.00375 2.00 0 0.037 18 −5.554 4.091 0.0002 6.49 6.667 [55 66] [80 120] Th1
2 0.0175 1.75 0 0.038 16 −6.047 2.543 0.0005 5.638 3.333 [21 24] [45 55] Th2
8 0.00834 3.25 0 0.045 12 −3.55 5.326 0.002 3.38 2.000 [25 30] Th3

The load flow equations of the OPF problem, wind, incorporating thermal, and solar generating
systems, were computed using MATPOWER [62,63]. To ensure statistical robustness, each optimiza-
tion algorithm was executed 30 times across all test cases of the proposed OPF problem. The simulation
studies adhered to the test cases outlined in the subsequent sections.

5.2 Exploring Diverse OPF Scenarios: A Comprehensive Analysis
In the subsequent section, we present the simulation results of various scenarios to assess the

performance and robustness of the proposed OPF formulations. Each scenario represents a distinct
configuration aimed at addressing specific challenges in power system optimization. The diverse cases
encompass considerations such as valve point effects for thermal units, emissions and taxes, quadratic
cost functions with POZs, active power losses, voltage stability index (VSI), and voltage deviations. The
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following analysis provides valuable insights into the effectiveness of the developed OPF formulations
across a spectrum of real-world conditions.

This study examines six cases addressing different challenges in OPF. These cases involve integrat-
ing cost functions, considering emissions and taxes, exploring quadratic cost functions with POZs, and
incorporating considerations for active power loss and voltage deviation. Detailed descriptions of each
case are provided in the subsequent sections.

5.2.1 Multi-Objective Optimization for Total Cost Minimization with Valve Point Considerations
(Case 1)

In this context, the objective is to minimize the total cost by utilizing a quadratic cost function with
VPE for thermal generators and incorporating a cost model for wind and photovoltaic (PV) energy
systems. The aim is to optimize the scheduled output powers from various energy sources within the
modified power system, striving for the lowest basic power cost.

Table 4 provides a comprehensive summary of optimization outcomes, featuring the best, worst
(Max), average (Mean), and standard deviation (Std.) values from 30 independent runs. The compar-
ison includes EHO, TEO, MFO, PSO, and CSBO algorithms, along with the proposed GBBLCO
method. The results of Case 1 underscore the remarkable effectiveness of GBBLCO. GBBLCO
surpasses conventional optimization techniques such as CO, MFO, EHO, WOA, and BBPSO in OPF,
showcasing rapid convergence and superior solution quality. Among the various algorithms employed,
GBBLCO achieves an outstanding total power cost minimization of 781.9005 $/h.

Table 4: The variables optimal values obtained for Case 1

Value EHO MFO WOA BBPSO CO GBBLCO

Fuel cost ($/h) 440.6820 441.7758 441.3583 440.1813 440.8024 437.1961
Wind gen cost ($/h) 246.3843 247.3979 246.9470 245.7196 246.3655 242.4460
Solar gen cost ($/h) 95.3087 93.2231 94.3735 96.3825 95.0239 102.2584
Total cost ($/h) 782.3749 782.3968 782.6789 782.2834 782.1919 781.9005
Power losses (MW) 5.8678 5.7712 5.7680 5.7727 5.7702 5.8393
Emission (t/h) 1.76207 1.76200 1.76203 1.76211 1.76207 1.76233
V.D. (p.u.) 0.49737 0.45417 0.46293 0.46336 0.46315 0.45632
Mean 783.1432 783.2015 783.6749 783.5467 782.9568 782.1264
Max 784.2560 784.1924 785.0005 784.3316 783.0322 782.3527
Std. 0.97 0.93 2.63 1.12 0.52 0.05
Time (s) 17 23 15 20 15 16

Fig. 6 visually illustrates the convergence patterns of various OPF optimization techniques,
emphasizing the distinct performance of GBBLCO in achieving optimal solutions.
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Figure 6: Convergences of the optimization techniques for Case 1

5.2.2 Strategic Optimization: Minimizing Comprehensive Costs through Emission-Aware Decisions and
Carbon Tax Integration (Case 2)

In this distinct case, the primary objective is to optimize the total power cost while addressing
environmental concerns by incorporating a fixed carbon tax (Carbon_tax) on thermal power genera-
tors, acknowledging their CO2 emissions. The prescribed Carbon_tax is established at 20 ($/ton) [58].
Through this simulation, the study explores how the enforced carbon tax influences the power grid,
promoting increased integration of wind and solar energy sources.

Fig. 7 illustrates the distinct convergence patterns exhibited by various optimization algorithms,
offering a visual representation of their performance. A detailed comparative analysis of overall cost,
control variables, reactive powers, and additional parameters is meticulously presented in Table 5.
Significantly, GBBLCO showcases notable efficacy by achieving a minimal total power cost of
810.6784 $/h. This highlights the clear superiority of GBBLCO over conventional CO and other
applied techniques, not only in terms of cost minimization but also in the convergence of solutions.

Figure 7: Convergences of the optimization techniques for Case 2
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Table 5: Consolidates the optimal values of variables obtained for Case 2, offering a comprehensive
snapshot of the simulation outcomes

Value EHO MFO WOA BBPSO CO GBBLCO

Fuel cost ($/h) 423.7186 435.3848 424.9161 424.5994 428.1498 425.3554
Wind gen cost ($/h) 254.6476 263.7479 256.6604 257.0603 259.4577 257.3138
Solar gen cost ($/h) 115.6193 94.2477 112.2890 112.1851 105.6301 110.5508
Carbon tax ($/h) 17.2782 18.31 17.666 17.425 17.6756 17.4584
Total cost ($/h) 811.2636 811.6904 811.5316 811.2698 810.9132 810.6784
Power losses (MW) 5.2909 5.2901 5.2836 5.2797 5.2738 5.2807
Emission (t/h) 0.86391 0.91550 0.87330 0.87125 0.88378 0.87292
V.D. (p.u.) 0.47328 0.46106 0.45920 0.46462 0.45919 0.46197
Mean 812.8324 813.0068 813.2810 812.7534 811.5711 810.7629
Max 814.1615 815.6274 815.7563 814.9510 812.0105 810.8563
Std. 2.41 3.96 4.15 2.83 0.88 0.47
Time (s) 21 27 29 23 25 21

5.2.3 Maximizing Efficiency through Prohibited Operating Zones Integration (Case 3)

This case delves into the intricacies of optimizing total costs while factoring in POZs alongside the
financial models for both wind and PV energy systems, aligning with the specified objective function
in Eq. (10). As with the previous cases, the comparative analysis of GBBLCO, CO, MFO, EHO, WOA,
and BBPSO algorithms’ convergence is visually depicted in Fig. 8. Meanwhile, Table 6 meticulously
outlines the optimal results pertaining to reactive powers, control variables, overall cost, and additional
parameters.

Figure 8: Convergences of the optimization techniques for Case 3
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Table 6: The variables optimal values obtained for Case 3

Value EHO MFO WOA BBPSO CO GBBLCO

Fuel cost ($/h) 436.9827 437.2230 443.7364 441.5933 444.1399 437.9868
Wind gen cost ($/h) 242.8130 242.6441 249.3036 247.1726 249.4822 243.4930
Solar gen cost ($/h) 102.5433 102.6128 89.8783 93.7736 88.3022 100.4144
Total cost ($/h) 782.3390 782.4798 782.9183 782.5395 781.9543 781.8041
Power losses (MW) 5.7889 5.7913 5.7651 5.7722 5.7618 5.7820
Emission (t/h) 1.76235 1.76233 1.76187 1.76201 1.76186 1.76227
V.D. (p.u.) 0.45387 0.45552 0.45356 0.45428 0.46721 0.46409
Mean 783.5638 783.6095 783.8177 783.7849 782.7690 781.9273
Max 784.9914 784.5201 785.2654 785.3115 783.2084 782.1168
Std. 2.06 1.92 2.45 2.71 1.18 0.55
Time (s) 21 26 17 19 25 19

The simulation outcomes for Case 3 reveal that the proposed GBBLCO algorithm yields a
noteworthy total power cost of 781.8041 $/h, surpassing the results obtained from conventional
CO and other benchmark methods. This underscores GBBLCO’s efficacy in achieving superior
optimization outcomes. The integration of POZ considerations, along with wind and PV energy
system cost models, further exemplifies the adaptability and robust performance of GBBLCO. These
results contribute to a broader understanding of the algorithm’s applicability in diverse optimization
scenarios, positioning it as a promising candidate for addressing complex power system challenges.

5.2.4 Enhancing System Efficiency through Active Power Loss Minimization (Case 4)

This case focuses on optimizing active power loss within the IEEE 30-bus test system, which has
been augmented with the integration of wind and PV energy sources. The goal is to enhance system
efficiency by minimizing active power loss through the application of various optimization algorithms.
Table 7 provides a comprehensive overview of the simulation results for Case 4, elucidating the optimal
values achieved by each algorithm. Additionally, Fig. 9 visually compares the convergence patterns of
GBBLCO against conventional CO, MFO, EHO, WOA, and BBPSO algorithms.

Table 7: Optimal values of variables for Case 4

Value EHO MFO WOA BBPSO CO GBBLCO

Fuel cost ($/h) 289.7193 296.6801 298.0422 304.9020 295.2895 302.6589
Wind gen cost ($/h) 459.3914 459.8404 455.4368 452.1334 464.5358 464.6216
Solar gen cost ($/h) 131.9691 129.1197 127.2365 121.5292 122.1760 113.8772
Total cost ($/h) 881.0799 885.6401 880.7155 878.5646 882.0013 881.1577
Power losses (MW) 2.1713 2.2199 2.2348 2.1947 2.0784 2.0733
Emission (t/h) 0.10064 0.09995 0.10283 0.09868 0.09958 0.09889
V.D. (p.u.) 0.52568 0.58150 0.52450 0.46220 0.51046 0.51567
Mean 2.8360 2.9843 3.4457 3.1806 2.5548 2.0988
Max 4.3619 4.1258 4.7088 4.2482 2.9860 2.1429

(Continued)
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Table 7 (continued)

Value EHO MFO WOA BBPSO CO GBBLCO

Std. 2.70 2.47 1.95 1.82 0.61 0.11
Time (s) 20 22 18 19 17 16

Figure 9: Convergences of the optimization techniques for Case 4

The simulation outcomes reveal that the GBBLCO algorithm attains a commendable active
power loss value of 2.0733 MW, outperforming the results obtained from other algorithms. This
underscores GBBLCO’s efficacy in minimizing active power loss, thereby contributing to the improved
efficiency of the modified IEEE 30-bus test system. The convergence comparison presented in Fig. 9
further accentuates the algorithm’s ability to reach optimal solutions efficiently. These results position
GBBLCO as a promising tool for addressing active power loss optimization challenges within power
systems augmented with renewable energy sources.

5.2.5 Enhancing Voltage Deviation through Deviation Optimization (Case 5)

Case 5 focuses on optimizing the voltage deviation (V.D.) within the IEEE 30-bus test system, while
considering wind and PV energy systems to enhance voltage stability. The primary goal is to minimize
voltage deviation, ensuring improved stability through the application of diverse optimization algo-
rithms. The results, detailed in Table 8, portray the achievements of the MFO, EHO, WOA, BBPSO,
CO, and GBBLCO algorithms in the context of voltage deviation minimization. Table 8 reflects the
superior performance of the GBBLCO algorithm, yielding a voltage deviation of 0.37576, significantly
inferior to the obtained results from alternative algorithms. This underscores the effectiveness of
GBBLCO in mitigating voltage deviation and reinforcing the stability of the IEEE 30-bus test system.
Fig. 10 visually represents the convergence trends, emphasizing the efficient convergence of GBBLCO
toward optimal solutions.

In summary, the GBBLCO algorithm is a robust solution for addressing voltage deviation
optimization challenges in power systems enriched with RESs.
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Table 8: The variables optimal values obtained for Case 5

Value EHO MFO WOA BBPSO CO GBBLCO

Fuel cost ($/h) 635.3653 553.5308 473.8883 651.6799 596.5056 585.0456
Wind gen cost ($/h) 213.9297 282.2212 288.6137 194.2661 319.3061 330.8330
Solar gen cost ($/h) 45.8311 48.6767 94.2925 45.4231 45.1456 45.3573
Total cost ($/h) 895.1260 884.4287 856.7945 891.3691 960.9573 961.2359
Power losses (MW) 5.9550 5.5990 4.1952 6.6717 4.6191 4.4500
Emission (t/h) 0.89970 0.42760 0.13506 1.78491 0.14718 0.13531
V.D. (p.u.) 0.38434 0.39000 0.40491 0.39313 0.37601 0.37576
Mean 0.42951 0.43605 0.47966 0.42859 0.39845 0.38119
Max 0.47009 0.48362 0.52078 0.47669 0.41939 0.39060
Std. 0.57 0.64 0.51 0.74 0.23 0.086
Time (s) 27 20 14 23 16 17

Figure 10: Convergences of the optimization techniques for Case 5

5.2.6 Enhancing Voltage Stability Index (VSI) (Case 6)

Focuses on optimizing the enhancing voltage stability index (VSI) within the IEEE 30-bus test
system, while considering wind and PV energy systems to enhance voltage stability by Enhancing
voltage stability index. The primary goal is to minimize VSI, ensuring improved stability through
the application of diverse optimization algorithms. The results, detailed in Table 9, portray the
achievements of the MFO, EHO, WOA, BBPSO, CO, and GBBLCO algorithms in the context of
voltage deviation minimization. Table 9 reflects the superior performance of the GBBLCO algorithm,
yielding a voltage deviation of 0.1007, significantly inferior to the obtained results from alternative
algorithms. This underscores the effectiveness of GBBLCO in mitigating voltage deviation and
reinforcing the stability of the IEEE 30-bus test system. Fig. 11 visually represents the convergence
trends, emphasizing the efficient convergence of GBBLCO toward optimal solutions.

In summary, the GBBLCO algorithm is a robust solution on optimizing the enhancing voltage
stability index (VSI) in power systems enriched with RESs.
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Table 9: The variables optimal values obtained for Case 5

Value EHO MFO WOA BBPSO CO GBBLCO

Fuel cost ($/h) 649.3422 638.1823 702.3599 682.2094 715.1294 641.2614
Wind gen cost ($/h) 306.2014 317.8217 335.0029 299.6523 345.2418 332.1548
Solar gen cost ($/h) 47.3245 50.0138 52.2150 48.9314 48.6105 46.8025
Total cost ($/h) 1202.8681 1106.0178 1089.5778 1030.7931 1108.9817 1020.2187
Power losses (MW) 6.4045 6.0216 4.4823 5.9326 4.9012 4.7892
Emission (t/h) 0.7631 0.3020 0.13612 0.8302 0.1492 0.1362
V.D. (p.u.) 0.3966 0.3723 0.3942 0.3934 0.3849 0.3921
VSI (p.u.) 0.22865 0.21248 0.20925 0.17362 0.17528 0.1007
Mean 0.3793 0.3826 0.3136 0.2359 0.2086 0.1284
Max 0.4965 0.4911 0.5004 0.4350 0.4037 0.1819
Std. 0.64 0.84 1.04 0.81 0.52 0.065
Time (s) 31 22 18 20 18 19
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Figure 11: Convergences of the optimization techniques for Case 6

5.3 Discussion: Harnessing Optimality across Multiple Power System Scenarios
The comprehensive simulation study encompassing Cases 1 to 5 illuminates the efficacy of the

GBBLCO algorithm in enhancing the performance of power systems enriched by renewable energy
sources. The obtained results unveil noteworthy advancements in various optimization scenarios, each
shedding light on specific aspects of power system functionality.

5.3.1 Case 1: Total Cost Optimization with Valve Point Effects

In Case 1, GBBLCO remarkably outperforms conventional optimization techniques, showcasing
both rapid convergence and superior solution quality. The algorithm achieves a minimal total power
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cost of 781.9005 $/h, underscoring its prowess in navigating the complexities introduced by VPE in
thermal units and wind-PV energy systems.

5.3.2 Case 2: Total Cost Optimization with Emission and Carbon Tax

The application of a fixed carbon tax in Case 2 highlights GBBLCO’s adaptability to environ-
mental constraints. With a minimum total power cost of 810.6784 $/h, GBBLCO surpasses other
optimization methods, attesting to its adeptness in balancing economic objectives with emission
reduction targets.

5.3.3 Case 3: Total Cost Optimization Considering Prohibited Operating Zones (POZs)

GBBLCO extends its dominance in Case 3, optimizing the total cost while navigating prohibited
operating zones. With a total power cost of 781.8041 $/h, GBBLCO outshines competing algorithms,
showcasing its efficiency in managing operational constraints alongside the cost models of RESs.

5.3.4 Case 4: Optimization of Active Power Loss

In Case 4, targeting the active power loss of the modified IEEE 30-bus test system, GBBLCO
demonstrates superior performance with a minimized loss of 2.0733 MW. This underscores the
algorithm’s ability to enhance grid efficiency by mitigating active power losses more effectively than
other algorithms.

5.3.5 Case 5: Optimization of Voltage Deviation

GBBLCO continues its streak of success in Case 5, optimizing voltage deviation to a remarkable
low of 0.37576. The results showcase GBBLCO’s aptitude in fortifying voltage stability within power
systems augmented by wind and PV energy sources, surpassing the performance of alternative
algorithms.

5.3.6 Case 6: Optimization of Voltage Stability Index (VSI)

GBBLCO continues its streak of success in Case 6, optimizing voltage deviation to a remarkable
low of 0.1007. The results showcase GBBLCO’s aptitude in fortifying voltage stability index within
power systems augmented by wind and PV energy sources, surpassing the performance of alternative
algorithms.

5.4 IEEE 118 Bus Power System
The efficacy of the proposed GBBLCO is assessed in addressing extensive power systems within

the realm of electrical engineering. The electrical network under examination encompasses 9 trans-
formers, 54 power generators, 12 capacitors, 2 reactors, and 186 branches [64]. A total of 129
manipulated parameters are taken into account, encompassing 54 active power outputs of generators,
12 reactive power injection configurations for shunt capacitors, bus voltages, and 9 transformer tap
configurations. Voltage restrictions for all buses are sustained within the range of 0.94 to 1.06 per unit.
Transformer tap configurations are scrutinized within the interval of 0.90 to 1.10 per unit, and shunt
capacitors contribute reactive power ranging from 0 to 30 MVAR [15].

Scenario 1: The quadratic objective function for traditional power generators in OPF, excluding
solar and wind energy resources.
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In Table 10, the efficacy of GBBLCO is contrasted with results from different algorithms
investigated in the electrical engineering domain. An extensive literature review encompasses diverse
methods employed for addressing large-scale OPF issues. The comparative examination in these
tables highlights the excellence of GBBLCO in comparison to alternative optimization approaches
for attaining optimal OPF solutions. The simulation findings demonstrate a significant decrease in
cost, with GBBLCO accomplishing a minimum cost of $129,540.7925 per hour, outperforming the
results generated by alternative algorithms.

Table 10: Optimal results for Scenario 1

Method Min Mean Max Std. Time (s)

GBBLCO 129,540.7925 129,549.8814 129,561.3545 4.26 658
CO 130,114.8259 130,174.7329 130,286.1126 106.49 684
ETFWO [65] 129,542.8215 129,550.8843 129,561.7019 7.13 723.76
FHSA [66] 132,138.3 132,138.3 132,138.3 0.0 –
PSOGSA [44] 129733.6 – – – –
Rao-2 [66] 131490.7 – – – 804.6
MRao-2 [66] 131457.8 – – – 1160.3
FPA [62] 129688.7 – – – –
Rao-1 [66] 131817.9 – – – 808.0
GWO [67] 139948.1 142989.3 145484.6 797.8 1766.2
EWOA [68] 140175.8 – – – –
SSO [66] 132080.4 – – – –
MSA [62] 129640.7 – – – –
MFO [62] 129708.1 – – – –
CS-GWO [64] 129544.0 129558.9 129568.8 10.7 4252.5
ICBO [69] 135121.6 – – – –
IABC [70] 129862.0 129895.0 – 40.8 4157.8
MCSA [71] 129873.6 – – – –
Rao-3 [66] 131793.1 – – – 806.7

Scenario 2: OPF integrating a quadratic cost function for traditional generators and the assimila-
tion of solar and wind energy resources.

Addressing the challenge of OPF involves crafting a quadratic cost function for conventional
generators, considering their operational expenses. Moreover, the incorporation of solar and wind
energy sources in this context adds intricacies due to their intermittent behavior and variable outputs.
The primary objective is to enhance the optimization of power flow within the system, accounting for
the distinctive features and cost implications associated with both traditional and renewable energy
sources.

This system closely resembles the prior case study, integrating renewable energy sources at diverse
buses. Wind energy sources are strategically positioned at buses 18, 32, 36, 55, 104, and 110, while solar
energy generation units are situated at buses 6, 15, and 34, respectively.
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The optimized solution for this scenario, achieved through GBBLCO, is outlined in Table 11,
featuring a comparative analysis with the outcomes of the algorithms CO and the solutions derived
from reference [15]. These findings compellingly indicate that GBBLCO stands out as a highly
proficient algorithm for optimizing and effectively distributing loads in extensive and practical power
systems.

Table 11: Optimal results for Case 2

Method Min Mean Max Std. Time (s)

GBBLCO 103382.2317 103535.9940 103816.4361 83.19 672
CO 103514.9208 103724.1056 104249.3264 546.73 668
DEEPSO [15] 103407.6296 103889.1446 104507.4884 292.8782 –
MSA [15] 107695.0619 111205.0554 116303.6361 1857.2167 –
BSA [15] 117149.9833 120443.2982 123385.1256 1638.0949 –
DS [15] 110992.4249 112680.2902 114787.7786 953.6529 –

5.5 Conclusion: Unleashing the Potential of GBBLCO
The simulation results collectively endorse GBBLCO as a versatile and robust optimization tool

for diverse challenges in power systems. Its adaptability to valve point effects, emission considerations,
operational constraints, power loss reduction, and voltage stability optimization underscores its
potential as a comprehensive solution for modern power system management. GBBLCO’s ability to
swiftly converge to optimal solutions while maintaining solution quality positions it as a promising
algorithm for addressing the evolving needs of renewable energy-integrated power systems.

6 Conclusions

In conclusion, this study undertakes a systematic exploration of the Gaussian Bare-Bones Levy
Cheetah Optimizer (GBBLCO) and its transformative impact on power system optimization. From
the abstract’s promise of innovation to the detailed analysis presented in the introduction, method-
ology, and simulation results, GBBLCO emerges as a potent tool for navigating the complexities of
contemporary power systems. Cases 1 to 5 serve as microcosms of real-world challenges, highlighting
GBBLCO’s effectiveness in addressing diverse optimization objectives. The algorithm’s ability to
handle valve point effects, emission constraints, prohibited operating zones, active power losses, and
voltage stability positions it as a comprehensive solution for the intricate demands of renewable
energy-integrated power systems. Simulation results not only validate the algorithm’s capabilities but
also accentuate its superiority over conventional optimization techniques. The rapid convergence,
high solution quality, and adept handling of multidimensional optimization landscapes underscore
GBBLCO’s potential to redefine the standards of efficiency and sustainability in power system
operations. In this reflective conclusion, the spotlight remains on GBBLCO as a harbinger of positive
change. Its adaptability and efficiency present a promising trajectory toward optimal power systems
that seamlessly integrate renewable energy sources. As the scientific community charts the course for
sustainable energy futures, GBBLCO stands out as a catalyst for transformative solutions in power
system optimization.



28 CMES, 2024

Acknowledgement: The author extends the appreciation to the Deanship of Postgraduate Studies and
Scientific Research at Majmaah University for funding this research work through the Project (ICR-
2024-1002).

Funding Statement: This research is supported by the Deanship of Postgraduate Studies and Scientific
Research at Majmaah University in Saudi Arabia under Project Number (ICR-2024-1002).

Author Contributions: Conceptualization, A.S.A. and M.A.Z.; methodology, A.S.A. and M.A.Z.;
validation, A.S.A. and M.A.Z.; formal analysis, A.S.A. and M.A.Z.; investigation, A.S.A. and
M.A.Z.; resources, A.S.A. and M.A.Z.; data curation, A.S.A. and M.A.Z.; writing—original draft
preparation, A.S.A., M.A.Z., and S.A.; writing—review and editing, A.S.A., M.A.Z., and S.A.;
visualization, A.S.A. and M.A.Z.; supervision, A.S.A. and M.A.Z.; project administration, A.S.A.
and M.A.Z. All authors have read and agreed to the published version of the manuscript.

Availability of Data and Materials: The authors confirm that the data supporting the findings of this
study are available within the article by the authors on request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Hassan, M. H., Elsayed, S. K., Kamel, S., Rahmann, C., Taha, I. B. (2022). Developing chaotic Bonobo

optimizer for optimal power flow analysis considering stochastic renewable energy resources. International
Journal of Energy Research, 46(8), 11291–11325.

2. Farhat, M., Kamel, S., Atallah, A. M., Hassan, M. H., Agwa, A. M. (2022). ESMA-OPF: Enhanced slime
mould algorithm for solving optimal power flow problem. Sustainability, 14(4), 2305.

3. Guvenc, U., Duman, S., Kahraman, H. T., Aras, S., Kati, M. (2021). Fitness–distance balance based
adaptive guided differential evolution algorithm for security-constrained optimal power flow problem
incorporating renewable energy sources. Applied Soft Computing, 108, 107421.

4. Duman, S., Kahraman, H. T., Kati, M. (2023). Economical operation of modern power grids incorporating
uncertainties of renewable energy sources and load demand using the adaptive fitness-distance balance-
based stochastic fractal search algorithm. Engineering Applications of Artificial Intelligence, 117, 105501.

5. Abdo, M., Kamel, S., Ebeed, M., Yu, J., Jurado, F. (2018). Solving non-smooth optimal power flow
problems using a developed grey wolf optimizer. Energies, 11(7), 1692.
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