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ABSTRACT

A significant obstacle in intelligent transportation systems (ITS) is the capacity to predict traffic flow. Recent
advancements in deep neural networks have enabled the development of models to represent traffic flow accurately.
However, accurately predicting traffic flow at the individual road level is extremely difficult due to the complex
interplay of spatial and temporal factors. This paper proposes a technique for predicting short-term traffic flow
data using an architecture that utilizes convolutional bidirectional long short-term memory (Conv-BiLSTM) with
attention mechanisms. Prior studies neglected to include data pertaining to factors such as holidays, weather
conditions, and vehicle types, which are interconnected and significantly impact the accuracy of forecast outcomes.
In addition, this research incorporates recurring monthly periodic pattern data that significantly enhances the
accuracy of forecast outcomes. The experimental findings demonstrate a performance improvement of 21.68%
when incorporating the vehicle type feature.
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1 Introduction

The performance of traffic flow prediction is the foundation for dynamic strategies and applica-
tions in intelligent transportation systems. This issue holds immense practical importance for enhanc-
ing traffic safety and alleviating road congestion. This predicting capability enables effective decision
-making for traffic management, encompassing adjustments to traffic signals and the implementation
of temporary traffic control measures. Hence, it has progressively garnered the interest of numerous
researchers [1–4], with extensive usage in detecting transportation anomalies [5,6], optimizing resource
allocation [7], managing logistics supply chains [8], and overseeing urban administration [9,10].

Traffic flow typically has inherent patterns, suggesting it is generally possible to predict it
accurately. Over the past few decades, significant research has been conducted on predicting traffic
flow. Various methods have been explored, including the autoregressive integrated moving average
(ARIMA) approach [11], support vector regression (SVR), and K-nearest neighbors (KNN) [12].
ARIMA is a parametric model that relies on rigorous theoretical assumptions [13,14]. It works in a
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basic linear model. Most conventional parameter models are characterized by simplicity and efficiency
in computation. However, they exhibit limited robustness and are better suited for road sections with
consistent traffic circumstances. Consequently, it cannot reliably predict traffic flow, which is complex
and nonlinear [15,16]. As a result of the previously described shortcomings of conventional statistical
models, researchers gravitated towards machine learning models.

Machine learning models such as SVR and KNN provide adaptability as they can acquire
knowledge from the data. Nevertheless, the prediction performance of these techniques remains
unsatisfactory as they solely account for the temporal fluctuations of traffic flow, disregarding its
stochastic and nonlinear characteristics. Moreover, the conventional machine learning approaches
rely on manually designed parameters to seize the properties of traffic flow. Another limitation of
classical machine learning is the laborious task of manually extracting features [15]. This condition
creates a high dependency on domain experts in certain fields and causes insufficient for achieving
precise prediction performance.

Presently, two distinct perspectives exist on enhancing performance in deep learning (DL), specif-
ically the model-centric and the data-centric approaches. In a model-centric context, the researcher
iteratively enhances the designed model (algorithm/code) while keeping the quantity and kind of
acquired data constant. On the other hand, researchers of the data-centric approach adhere to
static models while consistently enhancing the quality of the data [17]. Deep learning has made
significant advancements in recent years, demonstrating exceptional achievements in diverse fields
such as speech recognition and computer vision. In contrast to conventional artificial neural network
(ANN) models, deep learning models employ multi-layer structures to retrieve intrinsic features from
extensive raw data sets automatically. Due to the influence of deep learning, there has been a notable
increase in enthusiasm for transportation research in recent years. Numerous deep-learning techniques
for predicting traffic flow have been proposed [18–21]. In recent times, there has been a notable
improvement in the predictive performance of deep models, including the variance of long short-
term memory network (LSTM) [22] and convolutional neural network (CNN) [23], which can be
attributed to their robust ability to effectively capture temporal or spatial dependencies, surpassing
the performance of shallower models.

Nonetheless, current studies that rely on neural network models for traffic flow prediction
encounter the following limitations. Certain studies utilize basic neural network models like stacked
autoencoders (SAE), LSTM, or CNN, failing to capture traffic flow’s intricate characteristics ade-
quately; as a result, these models offer only marginal improvements in prediction performance.
Typically, LSTM captures temporal characteristics, while CNN extracts spatial features. LSTMs are
inherently unidirectional, which implies that they can handle information sequentially, moving from
the past to the future. This condition can provide a constraint when dealing with worldwide scope
and interdependencies in both directions. Addressing this issue, bidirectional long short-term memory
(BiLSTM) was designed to process information from the past and future simultaneously, enabling the
model to gain a more comprehensive knowledge of the whole context of the data series [24]. CNN
excels at obtaining highly effective spatial information. However, it has difficulties when it comes to
extracting temporal aspects. The two models mentioned above are often utilized independently for
each distinct situation. By combining the advantages of both models, it is possible to overcome existing
challenges associated with the complex and nonlinear spatiotemporal properties of traffic flow data.

Moreover, existing studies do not fully exploit the complex structure present in traffic flow data.
They solely employ attention methods on a single network layer, neglecting to allocate attention to
the remaining layers [25]. Several variables impact the performance of traffic flow prediction. They
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disregard the significance of conditions or occurrences at a specific location or during specific time
intervals in previous traffic patterns, which are crucial in making precise predictions about future
traffic patterns [26,27]. Here, we propose a unique hybrid deep learning Conv-BiLSTM method
incorporating an attention mechanism to tackle the abovementioned issues. This methodology utilizes
heterogeneous multi-periodic intra-spatiotemporal data to improve the performance of traffic flow
prediction. The main contributions of this paper are as follows:

• In this study, we proposed a novel hybrid deep learning model incorporating Conv-BiLSTM
networks and BiLSTM using an attention mechanism to leverage traffic flow’s spatiotemporal
and periodicity characteristics effectively. In contrast to the current hybrid model utilized
for traffic flow prediction, the Conv-BiLSTM model demonstrates enhanced efficiency in
capturing spatiotemporal data. The efficiency is achieved by processing spatial and temporal
features together, improving predictive performance.

• Attention mechanisms are developed for Conv-BiLSTM and BiLSTM modules to dynamically
assign varying levels of attention to a sequence of traffic flows at distinct temporal instances.
The suggested system can autonomously differentiate the significance of each flow sequence’s
contribution to the ultimate prediction performance outcome.

• This study combines two methodologies: the model-centric approach and the data-centric
approach. In the context of the data-centric approach, we include intra-data to segregate traffic
flow into distinct categories depending on five vehicle types rather than aggregating them into
a single count of vehicles.

• In this study, our approach collects heterogeneous spatiotemporal data features (holidays,
weather, and vehicle type) at current, daily, weekly, and monthly periodicities that previous
studies have not implemented to improve prediction performance.

The subsequent sections of this work are structured in the following manner. In Section 2, the data
representation is introduced. Section 3 introduces a unique deep-learning methodology for predicting
traffic flow. In Section 4, we undertake tests on the dataset and evaluate the predictive performance
compared to many current approaches. Section 5 presents the conclusion and future research.

2 Research Data

The traffic flow dataset used in this study was obtained from the Taiwan Ministry of Transporta-
tion, which can be accessed publicly in the Traffic Data Collection System (TDCS) (https://tisvcloud.
freeway.gov.tw/history/TDCS/M06A/). The dataset presented in this research encompasses pertinent
information on the number of cars observed on the Taiwan National Freeway. This study focused
on observing the traffic flow at eight gantries along Taiwan National Freeway No. 3 from November
2016 to October 2019 (3 years). The input of this paper is from the output of frequency distributions of
repeats extracted from vehicle trips via previous approaches developed in [28,29]. On the other hand,
there was another similar work to have maximal repeat extraction from bus passenger’s trips [30].
Apart from data on the traffic flow, this research also involves other features such as weather (https://
openweathermap.org/) and holiday (https://timeanddate.com) data. Detailed feature information can
be found in Table 1.

https://tisvcloud.freeway.gov.tw/history/TDCS/M06A/
https://tisvcloud.freeway.gov.tw/history/TDCS/M06A/
https://openweathermap.org/
https://openweathermap.org/
https://timeanddate.com
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Table 1: Feature information [31]

Traffic flow Holidays Weather

Numerical Categorical

Sedan (VT-31) Weekday Wind speed Clear
Pickup (VT-32) Weekend Humidity Clouds
Bus (VT-41) Cont_holiday Drizzle
Truck (VT-42) Fog
Trailler (VT-5) Haze

Mist
Rain
Thunderstorm

The weather feature is classified into two distinct categories: numerical and categorical. The
wind speed measurements consist of decimal values spanning from 0 to 15.95, while the humidity
readings are whole numbers ranging between 0 and 100. Conversely, various weather conditions
are distinguished by boolean values. Holidays fall into three categories: weekday, weekend, and
cont_holiday. The weekday category pertains to holidays occurring on any day from Monday to Friday.
The weekend condition refers to holidays that occur on Saturdays or Sundays. The cont_holiday
condition encompasses holidays that may occur either prior to or following weekdays or weekends.
Meanwhile, for vehicle types, we divide traffic flow into five categories (sedan, pickup, bus, truck,
trailer). Detailed data preprocessing can be seen in the previous research [31].

Successful traffic flow prediction models must accurately capture the random and nonlinear
characteristics of transportation traffic conditions. Numerous traffic models based on statistics or
machine learning techniques have been developed to enhance the accuracy of predictions. One of the
crucial processes of machine learning is feature learning. The process entails extracting and selecting
the most significant aspects from past traffic flow data.

The characteristics of traffic flow commonly display spatiotemporal correlation and periodic
patterns. Specifically, the traffic flow at the observation area is influenced by the traffic conditions
of nearby locations and affected by previous time intervals. Traffic flow also demonstrates periodic
patterns on a current, daily, weekly, and monthly basis. For example, the traffic flow variation on the
same day for two consecutive weeks exhibits remarkable similarity. What is rarely considered is the
monthly periodicity, even though monthly periodicity is the most pronounced pattern compared to
daily and weekly periodicity. For instance, it can be related to weather or holiday patterns. Generally,
weather conditions and holidays within a country tend to remain relatively consistent, unlike daily
and weekly periodicity, which are more random. This research paper introduces a deep learning model
that utilizes spatiotemporal correlation and periodic characteristics to enhance short-term traffic flow
prediction.

Predicting traffic flow aims to enhance transportation efficiency by delivering precise and timely
information regarding upcoming traffic conditions. The issue of predicting traffic flow can be stated in
the following manner. Consider that X p

T represents the traffic flow throughout the T th time interval.
The observed feature can refer to vehicle types, weather, or type of holiday. The observed prediction
target in this research is vehicle-type sedan (VT-31) traffic flow. Given the historical traffic flow
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sequence of observed feature, the objective at the current time t is to forecast the traffic flow at the
time interval (t + h �), where � represents the prediction horizon

{
X p

T

}
(T) = t – nΔ, . . . , t – �, t,

and p ∈ P, where P is the set of observation features. This study considers the following parameters:
� = 1 h, n = 12, and h = 1. n indicates that we utilize a historical dataset spanning 12 h to forecast
the traffic flow for the upcoming one hour. For simplicity in explanation, we represent t – n as t – n�

by excluding the � symbol in this paper.

Before presenting our traffic flow prediction model, we explain the process of creating a historical
dataset for this research. Here, we represent time series numerical data from the dataset as an image,
adopting the approach carried out in previous research [31]. Let f p

t represent the value of each
observation feature p at time t. Each feature in Table 1 undergoes a normalization step to ensure that
its data value falls within the range of [0,1]. The representation of the historical observation feature p
can be expressed as X p

T = [f p
0 , . . . , f p

T ].

Next, we combine all features (p features) to generate a matrix representing the spatiotemporal
traffic flow. Where Ḉp

t = [f 1
t , f 2

t , . . . , f p
t ] designates the observation feature of the prediction-based

current periodic (c) at time t.

Ḉp
t =

⎡
⎢⎢⎢⎣

f 1
t−n f 1

t−(n+1)
. . . f 1

t . . . f 1
t+n

f 2
t−n f 2

t−(n+1)
. . . f 2

t . . . f 2
t+n

...
...

...
...

. . .
...

f p
t−n f p

t−(n+1), . . . f p
t . . . f p

t+n

⎤
⎥⎥⎥⎦ (1)

Furthermore, we contemplate the periodic characteristics of the traffic flow and other features.
We consider daily (d), weekly (Ẅ), and monthly (ṁ) patterns to create historical data and incorporate
all features with periodicity. The traffic data that shows a daily pattern can be obtained by considering
the n time intervals before and after the precise moment t on the previous day. This can be stated as:

Dp
t =

⎡
⎢⎢⎣

f 1
t−d−n f 1

t−d−n+1 . . . f 1
t−d f 1

t . . . f 1
t+n

f 2
t−d−n f 2

t−d−n+1 . . . f 2
t−d f 2

t . . . f 2
t+n

...
...

...
...

...
. . .

...
f p

t−d−n f p
t−d−n+1 . . . f p

t−d f p
t . . . f p

t+n

⎤
⎥⎥⎦ (2)

where d designates the exact instant as time t on the last day. Likewise, we obtain historical traffic flow
data that exhibits a weekly pattern by analyzing the time intervals before and after the same instant in
the previous week, denoted as time t. We employ the following method:

Ẅ
p

t =

⎡
⎢⎢⎣

f 1
t−ẅ−n f 1

t−ẅ−n+1 . . . f 1
t−ẅ f 1

t . . . f 1
t+n

f 2
t−ẅ−n f 2

t−ẅ−n+1 . . . f 2
t−ẅ f 2

t . . . f 2
t+n

...
...

...
...

...
. . .

...
f p

t−ẅ−n f p
t−ẅ−n+1 . . . f p

t−ẅ f p
t . . . f p

t+n

⎤
⎥⎥⎦ (3)

where Ẅ indicates the identical point as time t in the last week, month patterns are denoted as
combined data from the current month and the previous month.

Ṁ
p

t =

⎡
⎢⎢⎣

f 1
t−ṁ−n f 1

t−ṁ−n+1 . . . f 1
t−ṁ f 1

t . . . f 1
t+n

f 2
t−ṁ−n f 2

t−ṁ−n+1 . . . f 2
t−ṁ f 2

t . . . f 2
t+n

...
...

...
...

...
. . .

...
f p

t−ṁ−n f p
t−ṁ−n+1 . . . f p

t−ṁ f p
t . . . f p

t+n

⎤
⎥⎥⎦ (4)
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The visual depiction of the merging process for each data by period can be seen in Fig. 1. The
dataset marked as “blue” encompasses historical data over the preceding 12-h period. In contrast, the
dataset marked as “orange” pertains to historical data, specifically from the corresponding time of the
current day. The “purple” data represents the 12-h historical records of the preceding week, whereas
the “brown” segment encompasses the identical dataset from the preceding month. The combination
of each data is represented as current, daily, weekly, and monthly periodic data, as mentioned below.

Figure 1: Data input representation

3 Proposed Method

This section explains the proposed hybrid model for predicting traffic flows. The proposed model
consists of a Conv-BiLSTM module and three BiLSTM modules. This part of the proposed method
can be seen in Fig. 2. In the first step, the primary objective of the convolutional network is to extract
spatiotemporal information. The data set used in this research consists of heterogeneous data covering
three aspects: traffic flow, holidays, and weather with different periodicity patterns. Convolutional
models are most suitable for managing this type of data. In the second step, the primary purpose
of BiLSTM is to extract information from the temporal characteristics of traffic flows. This model
will extract crucial data based on periodic patterns for each feature. In prior studies, the authors [25]
employed a comparable methodology. One notable distinction is how the input data is structured for
the Conv-BiLSTM and BiLSTM layers.

Figure 2: Conv-BiLSTM with attention mechanism

Previous studies have utilized homogenous inter-data traffic flow from two distinct geographical
areas [25]. The data on homogeneous traffic flow does not provide distinctions among various types of
vehicles. In this investigation, we employed heterogeneous intra-data [27], which refers to data collected
from a specific area (eight gantries in Taiwan National Freeway No.3). This research categorizes traffic
flow data based on five different types of vehicles (sedan, pickup, bus, truck, trailer). Furthermore,
we have incorporated an attention mechanism that operates in the Conv-BiLSTM layer and across all
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model layers. Running this strategy enables the model to dynamically assess the varying significance
levels of flow sequences at different periodic instances. The subsequent subsections will provide a
comprehensive explanation of each module.

3.1 Conv-BiLSTM
The Conv-BiLSTM module serves as the primary constituent of the model that has been

suggested, seeking to derive spatiotemporal characteristics from the traffic flow. The Conv-BiLSTM
module integrates a convolutional neural network with a Bidirectional Long Short-Term Memory
(BiLSTM) network, as depicted in Fig. 2. The architecture in the first stage consists of two convolu-
tional layers. In the next stage, it passes through two BiLSTM layers.

The Conv-BiLSTM model takes as input spatiotemporal data derived from three distinct features,
which are denoted as the current periodic matrix Ḉp

t . This matrix, as denoted in Eq. (1), represents
the historical data that is to be forecasted. To acquire the spatiotemporal feature, a one-dimensional
(1-D) convolution operation is conducted on the traffic flow data Ḉp

t at each time step t. Pooling is
not performed in the convolution layer. The output of the last convolution layer (layer 2) within this
particular layer is represented as Gs

t . Furthermore, the output of the convolutional layer is subsequently
utilized as the input for the BiLSTM layer. In this study, to improve the performance of traffic
flow prediction, we leverage the BiLSTM models, which can capture temporal characteristics of
traffic data by employing contextual information from two-directional. The bidirectional character of
BiLSTM models enables them to capture long-term dependencies present in the data more efficiently.
Individuals can retain and recall information from preceding and subsequent sequence segments. This
cognitive function is important in activities necessitating comprehension of the whole context.

The initial BiLSTM layer is tasked with processing the sequential output derived from the final
convolution layer, Gs

T = Gs
t−n, . . . , Gs

t−1, Gs
t , spanning from the beginning to the last. This section

computes the hidden state value for each time step Hs
1,T = Hs

1,t−n, . . . , Hs
1,t−1, Hs

1,t. Next, the concealed
state sequence Hs

1,T is fed into the second BiLSTM layer to compute the hidden state Hs
2,T at time step

t, which serves as the output of the complete BiLSTM network Hs
T . The output of this last BiLSTM

layer subsequently serves as the input for the attention mechanism, which will be elaborated on in the
following section.

3.2 Bi-Directional LSTM for Temporal Dependency
Acquiring temporal dependence is another crucial challenge in traffic flow prediction. Recurrent

neural network (RNN) is frequently employed to process data that exhibits sequential properties. The
Elman Network, introduced by Elman in 1990, is considered the most typical and fundamental version
of the standard RNN frequently utilized [32]. Nevertheless, the conventional RNN often encounters
gradient explosion and gradient disappearance issues while handling lengthy time series data. The
LSTM cell incorporates three control gates: the input, forget, and output. These gates utilize three
techniques to regulate the flow of information inside the network, enabling the implementation of
long-term memory. Fig. 3 illustrates the conventional configuration of the LSTM cell.

Fig. 3 depicts Xt as the parameter input value of the LSTM cell at a specific moment t, Ct as
the state value of the memory cell and ht as the hidden value output at time t. Wf , Wi, Wg, Wo,
and b represents the weights matrix and bias of each threshold layer. The term tanh refers to the
tanh activation function, while σ denotes the sigmoid activation functions. The internal computation
method of LSTM can be elucidated through Eqs. (5) to (10):
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Figure 3: The LSTM network structure [31]

Step 1: Compute the activation value ft of the forget gate at time t using the following formula:

ft = σ
(
Wf [Xt; Ht−1] + bf

)
(5)

Step 2: The next step is to calculate the numerical value of the input gate it and the candidate’s
state gt of the cell at time t. The precise calculating formulas are as follows:

it = σ (Wi [Xt; Ht−1] + bi) (6)

gt = tanh
(
Wg [Xt; Ht−1] + bg

)
(7)

Step 3: Compute the value Ct for updating the cell state at time t using the following formula:

Ct = ft × Ct−1 + it × gt (8)

Step 4: Compute the value of the output variable ot of the output gate at time t using the following
formula:

ot = σ (Wo [Xt; Ht−1] + bo) (9)

Ht = ot tanh(Ct) (10)

Fig. 4 depicts the bidirectional LSTM network, which includes forward and backward Long
Short-Term Memory (LSTM) models. The forward LSTM processes information in one way, while
the reverse LSTM processes information in the opposite direction. The input sequence undergoes
processing by the forward LSTM layer, given the output Hforward

T (Hf
T), while the reverse form of the

input sequence is inputted into the backward LSTM layer, given the output Hbackward
T (Hb

T).

Ultimately, the concealed states of the forward and backward layers are combined to form the
output. The basic LSTM’s limitation of just utilizing prior information is resolved, and the prediction
performance is enhanced by implementing two unidirectional LSTMs. We utilize the BiLSTM to
capture the temporal correlation of traffic flow in our study. Fig. 5 depicts the general structure of
the BiLSTM module utilized in the proposed model. In this module, Dp

t , Ẅ
p

t , and Ṁ
p

t represent the
input of the LSTM. Hd,f

t , Hw,f
t and Hm,f

t represent the output of the forward LSTM while Hd,b
t , Hw,b

t

and Hm,b
t represent the backward LSTM output when the inputs are Dp

t , Ẅ
p

t , and Ṁ
p

t , respectively. To
account for the regularity of traffic data, we employ numerous BiLSTM layers to extract recurring
characteristics from past traffic data.
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Figure 4: The structure of the BiLSTM network

Figure 5: The proposed model

3.3 Attention Mechanism Based on Temporal Dependency
The attention mechanism approach has been extensively used across various domains, including

natural language processing, image processing, and speech recognition. For example, the utilization of
attention mechanisms to enhance translation accuracy initially emerged in the context of translation
machines [1,33]. In short, the attention mechanism directs its emphasis on information that signifi-
cantly influences the results and reduces the weight of unimportant information during the feature
extraction process. The relative significance of traffic flow data at various time intervals may vary
concerning the forecasting objective. In the domain of traffic flow prediction, a similar phenomenon
is observed, where the influence of traffic flow varies at different periods, affecting the relevance of
prediction performance [25]. The variability of traffic conditions at a given observation site can exhibit
temporal fluctuations when forecasting traffic flow at the site of an observation area. In instances
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of congestion, the anticipated outcome may be more significantly impacted by the traffic conditions
observed at a remote point instead of those observed at a closer point.

However, the conventional BiLSTM model cannot determine which segments of a traffic flow
sequence are essential or significant. We have devised a dedicated attention mechanism tailored for
the Conv-BiLSTM module to tackle this problem. This mechanism enables automatic identification
and utilization of varying importance’s level within a traffic flow sequence at different time points.
We divide the temporal dependency into four categories based on the characteristics of the traffic
data: current, daily, weekly, and monthly period. The link between multiple recent time intervals
and the desired one is referred to as the current pattern; for example, traffic conditions at 10:00 am
will influence the situation at 11:00 am. The current, daily, weekly, and monthly patterns reference
the recurring character of human behavior. For instance, weekday traffic patterns vary similarly,
with distinct morning and evening rush hours. Additionally, the morning rush hour periods may be
postponed due to later weekend wake-up times.

An attention method is employed to dynamically modify the weighting of the output from the
BiLSTM module. The expression of the attention mechanism’s implementation can be formulated as
follows:

μit = tanh (Wωhit + bω) (11)

βit = exp
(
μT

it μω

)
∑

t exp
(
μT

it μω

) (12)

Si =
∑

t

βithit (13)

The learnable parameters in this context are denoted as Wω, bω, and μω. The attention score is
represented by βit, and the output of the attention layer is denoted as Si.

3.4 Output Layer
Following the attention layer, the spatiotemporal and periodicity features derived from the three

network components are consolidated into a feature vector via a feature fusion layer. Assuming that X
∈RN×C represents the input to the output layer, a two-layer fully connected neural network is employed
to predict a single timestep. T two-layer fully connected neural networks are employed to predict T
future timesteps. The final forecast is derived by aggregating the prediction results from each timestep.
The specific process can be outlined as follows:

ŷ(i) = ReLU
(
XW (i)

1 + b(i)
1

) × W (i)
2 + b(i)

2 ∈ RN×1 (14)

Ŷ = [
ŷ(1), ŷ(2), . . . ŷ(T)

] ∈ RN×T (15)

where the variable ŷ(i) represents the timestep used for making predictions at time i, W (i)
1 ∈ RN×1, b(i)

1 ∈
RC′ , W (i)

2 ∈ RC′×1, and b(i)
2 ∈ R represents the parameters that can be learned. The dimension of the

output of the first fully linked layer is denoted as C ′. We use Ŷ and ŷ to designate the predicted and
ground truth values. Table 2 shows a training algorithm for a Conv-BiLSTM model.



CMES, 2024 11

Table 2: Training algorithm of Conv-BiLSTM model

Algorithm 1 Training algorithm of Conv-BiLSTM model

Input: Historical observation: X p
T ; n, p; d; ẅ, ṁ;

Output: Learned Conv-BiLSTM model
1 model = Ø
2 for all available time interval t (0 ≤ t ≤ T − 1) do
3 for all features p (1 ≤ p ≤ P) do
4 Ḉp

t = [
f p

t−n, f p
t−(n+1), . . . , f p

t , . . . , f p
t+n

]
;

5 Dp
t = [

f p
t−d−n, f p

t−d−n+1, . . . , f p
t−d, f p

t , . . . , f p
t+n

]
;

6 Ẅ
p

t = [
f p

t−ẅ−n, f p
t−ẅ−n+1, . . . , f p

t−ẅ, f p
t , . . . , f p

t+n

]
;

7 Ṁ
p

t = [
f p

t−ṁ−n, f p
t−ṁ−n+1, . . . , f p

t−ṁ, f p
t , . . . , f p

t+n

]
;

8 //f p
t+n+1 is ground truth for feature p at time t+n+1

9
({

Ḉp
t , Dp

t , Ẅ
p

t , Ṁ
p

t

}
, f p

t+n+1

)
model

10 Set up all trainable parameters � in Conv-BiLSTM.
11 // � is all learnable parameters in Conv-BiLSTM
12 repeat
13 randomly take a batch of parameters from the model;
14 finding the best value of � with the smallest error;
15 until stopping condition is achieved;

4 Experimental Result
4.1 Metaparameter Settings

The proposed model was constructed utilizing the TensorFlow framework, and the experiments
were carried out on a Google Collaboration Pro Plus platform equipped with a T4 GPU. The
experiment involved a model that consisted of two convolution processes with three filters and 256
hidden units of BiLSTM. Using our dataset as a case study, we varied the size of the kernel convolution
layer from 2 to 11. We employed a two-layered BiLSTM architecture to capture the periodic patterns in
the traffic data effectively. Assign the optimization technique used was Adam, with an initial learning
rate of 0.001, a batch size of up to 128, and an epoch size of 500 for this model. This Adam optimization
technique was chosen since it has the capability to modify the learning rate adaptively. We adopt the
Conv-LSTM model as a benchmark model, following the specifications specified in the research [19].
To determine how to assess the efficacy of the suggested model, we employed the mean absolute error
(MAE) metric [34]. These parameters include a filter of size 10, a kernel size of 3, and a batch size of
128. The evaluation results using this model produced an MAE value of 21.041.

4.2 Proposed Model Performance
We performed comparison experiments using the following short-term traffic flow prediction

methodologies to assess the prediction performance of the proposed model: Conv-LSTM, CNN-
LSTM, and CNN-BiLSTM. We employ two scenarios, with the first scenario including applying the
attention mechanism solely to the first layer of Conv-BiLSTM. Furthermore, every layer employs an



12 CMES, 2024

attention technique. Fig. 6 shows the best prediction model performance based on their feature and
kernel size. The selection of kernel size is essential in determining the performance of convolutional
neural networks. The kernel is a compact window that traverses the input data to extract distinctive
characteristics. The choice of kernel size directly impacts the network’s capacity to capture spatial
information in the input. Greater kernel sizes efficiently capture comprehensive patterns and advanced
characteristics, although they can result in heightened computing intricacy and necessitate a larger
number of parameters. Conversely, smaller kernel sizes excel in capturing intricate details and specific
traits, improving parameter utilization. Ensuring the appropriate equilibrium of kernel sizes is crucial
for attaining peak performance in a convolutional network, as it dictates the network’s ability to
acquire hierarchical representations and effectively adapt to various inputs. Evaluating the kernel
size and other architectural decisions is crucial for creating convolutional networks that perform
exceptionally well in different computer vision tasks.

Figure 6: The best performance of all the prediction models with its features and kernel size

Fig. 7 indicates that the Conv-BiLSTM model, with vehicle type feature as input, generates the
greatest performance among other models when employing a kernel size of 3 and applying an attention
mechanism to each layer.

Tables 3 and 4 display the performance of various methods in predicting traffic flow over the next
hour. Based on the data presented in the table, it is evident that the proposed model (Conv-BiLSTM
with all layers using attention mechanism) outperformed all other models regarding the evaluation
metrics with a mean absolute error (MAE) value of 16.478. There was a performance increase of
21,68%. Across several prediction models, the vehicle type feature consistently exhibits the lowest
loss value. These findings indicate that the vehicle type attribute has the greatest influence on the
performance of the results for prediction.

Fig. 8 illustrates the impact of features and kernel sizes on each model when all layers use an atten-
tion mechanism. Fig. 8a, by utilizing weather data as input, the Conv-LSTM model’s performance is
subpar while employing kernel sizes of 2 and 3. Conv-LSTM’s performance improves when the kernel
size exceeds 3, comparable to other models. The Conv-BiLSTM model achieves optimal performance
with a kernel size of 5, as depicted in Fig. 8a. Fig. 8c demonstrates the input data related to the vehicle
type of various periodicities significantly influences the model’s performance. Employing kernel sizes
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between 2 and 6 demonstrates a propensity for achieving favorable performance outcomes. Meanwhile,
kernels with a value larger than 6 have negligible effect.

Figure 7: The effect of convolution kernel size on the traffic flow prediction model performance.
(a) Conv-LSTM with all layer attention mechanism, (b) Conv-BiLSTM with all layer attention
mechanism, (c) CNN-LSTM with all layer attention mechanism, (d) CNN-BiLSTM with all layer
attention mechanism

Table 3: MAE value by the effect of convolution kernel size on the model with layer 1 using attention
mechanism

Kernel
size

Conv-LSTM Conv-BiLSTM CNN-LSTM CNN-BiLSTM

Weather Holiday Vehicle
type

Weather Holiday Vehicle
type

Weather Holiday Vehicle
type

Weather Holiday Vehicle
type

K2 46.470 20.645 20.691 23.049 19.115 18.640 24.612 18.483 18.975 24.578 21.722 19.671

(Continued)
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Table 3 (continued)
Kernel
size

Conv-LSTM Conv-BiLSTM CNN-LSTM CNN-BiLSTM

Weather Holiday Vehicle
type

Weather Holiday Vehicle
type

Weather Holiday Vehicle
type

Weather Holiday Vehicle
type

K3 21.028 16.543 19.407 21.915 19.987 18.493 24.127 20.824 22.651 25.217 18.952 19.179
K4 21.676 46.547 22.259 21.921 18.850 20.202 25.349 19.227 19.841 23.890 20.985 17.807
K5 47.899 18.440 19.392 22.650 20.876 20.530 23.646 19.809 20.494 24.554 20.276 21.516
K6 50.364 19.789 18.292 22.227 17.913 16.891 23.995 20.078 17.458 21.663 18.103 20.306
K7 21.583 19.215 19.473 22.689 20.614 18.944 25.908 19.257 18.885 25.638 20.558 18.921
K8 22.525 20.248 19.217 22.172 19.509 18.151 24.597 20.195 17.452 25.455 20.149 18.975
K9 20.444 18.393 18.592 25.818 17.857 17.618 24.769 20.732 18.189 23.935 18.529 19.735
K10 25.847 18.535 17.550 22.699 21.226 18.241 23.794 20.341 19.699 22.745 21.264 19.424
K11 22.810 16.774 20.308 24.601 18.805 20.297 24.793 17.345 19.900 24.806 18.013 19.272

Table 4: MAE value by the effect of convolution kernel size on the model with all layer using attention
mechanism

Kernel
size

Conv-LSTM Conv-BiLSTM CNN-LSTM CNN-BiLSTM

Weather Holiday Vehicle
type

Weather Holiday Vehicle
type

Weather Holiday Vehicle
type

Weather Holiday Vehicle
type

K2 48.520 20.826 23.492 29.268 18.933 17.726 22.832 18.432 18.331 25.545 17.805 19.041
K3 47.083 20.009 17.833 25.901 18.705 16.478 24.147 19.547 20.194 25.022 18.823 18.487
K4 21.916 48.789 21.717 25.050 18.394 20.632 22.696 17.682 18.230 24.003 18.240 19.312
K5 21.544 44.302 20.870 21.422 18.603 18.195 24.080 22.144 19.990 26.236 17.086 17.726
K6 21.770 19.146 19.746 23.989 18.808 17.871 23.725 19.943 19.027 23.875 20.561 17.025
K7 24.124 19.740 19.132 21.954 18.814 17.957 24.568 20.627 17.060 23.448 21.785 18.633
K8 22.322 19.072 19.608 26.614 19.863 19.216 22.425 19.427 21.124 23.986 21.025 19.065
K9 24.806 17.727 20.234 25.322 18.106 18.355 24.679 19.997 19.741 25.365 23.358 19.910
K10 22.861 22.222 17.904 24.403 17.195 19.438 25.931 18.768 19.512 23.139 21.716 20.092
K11 22.589 18.997 21.601 22.177 17.769 22.768 23.950 18.847 18.225 25.849 19.863 19.386

Based on the conducted studies, incorporating vehicle-type variables had the most significant 
effect on enhancing prediction performance, resulting in a 21.68% increase when utilizing the Conv-
BiLSTM model. Table 4 demonstrates the fluctuation in error reduction when comparing various 
kernel sizes for each traffic flow prediction model using a model that incorporates attention techniques 
in all layers. The Conv-LSTM model has optimal performance when using a kernel size of 9 in 
combination with the holiday feature. Meanwhile, the Conv-BiLSTM model, which yields the most 
significant performance improvement when utilizing a kernel size of 3, incorporates the vehicle type 
feature. On the other hand, the CNN-LSTM and CNN-BiLSTM models, which have kernel sizes of 7 
and 6, respectively, demonstrate the best performance when considering the vehicle type feature.
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Figure 8: The effect of convolution kernel size on the traffic flow prediction model performance
based on input data feature to proposed model using all layers with attention-mechanism. (a) Weather
features of various periodicities, (b) holiday features of various periodicities, (c) vehicle type features
of various periodicities

5 Conclusion and Future Research

This study examines the short-term traffic flow prediction by utilizing the dataset provided by the
Taiwan Ministry of Transportation, specifically focusing on the number of cars on Taiwan National
Freeway No. 3. The hybrid deep learning model that combines convolutional neural networks and
BiLSTM networks was suggested as a way to deal with the complex and nonlinear features of traffic
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flow. The results of our study suggest that the Conv-BiLSTM model, which incorporates an attention
mechanism, effectively captures spatiotemporal data. Furthermore, integrating the suggested attention
mechanism throughout all layers amplifies the Conv-BiLSTM’s efficacy in enhancing prediction
performance. The traffic flow prediction model effectively catches repeating trends on a current,
daily, weekly, and monthly basis, hence improving the performance of predictions. Integrating diverse
features such as holidays, weather conditions, and vehicle types has benefited prediction models. The
Conv-BiLSTM model, when combined with the vehicle type feature, enhances prediction performance
by 21.68%. Empirical evidence shows that this strategy surpasses earlier methodologies in traffic flow
prediction.

Current research only emphasizes capturing spatiotemporal correlations based on the nature
and dynamics of traffic flow features. However, it has not paid attention to the Euclidean nature
of the road structure, such as paying attention to the linkage of traffic flow information between
road nodes [35]. In order to enhance prediction performance, it is necessary to enhance the present
model by transforming it into an Euclidean grid that will enable the model to effectively capture the
spatiotemporal correlation without sacrificing significant amounts of crucial information. Another
challenge in this research is the potential for data bias and scalability issues. The observation area of
this study specifically collects historical data based on traffic flow from eight gantries located on one
section of Taiwan National Freeway No. 3. Future research is important to compare the results of
traffic flow predictions involving observation areas from various points to test the model’s robustness.
However, many factors influence traffic flow, such as road conditions, events, and traffic flow in
opposite directions. The experiment should consider more factors to improve prediction performance
results in future work. The research would become more engaging if it possessed the capacity to predict
traffic flow in real-time scenarios.
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