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ABSTRACT

In recent years, there has been significant research on the application of deep learning (DL) in topology optimization
(TO) to accelerate structural design. However, these methods have primarily focused on solving binary TO
problems, and effective solutions for multi-material topology optimization (MMTO) which requires a lot of
computing resources are still lacking. Therefore, this paper proposes the framework of multiphase topology
optimization using deep learning to accelerate MMTO design. The framework employs convolutional neural
network (CNN) to construct a surrogate model for solving MMTO, and the obtained surrogate model can rapidly
generate multi-material structure topologies in negligible time without any iterations. The performance evaluation
results show that the proposed method not only outputs multi-material topologies with clear material boundary
but also reduces the calculation cost with high prediction accuracy. Additionally, in order to find a more reasonable
modeling method for MMTO, this paper studies the characteristics of surrogate modeling as regression task and
classification task. Through the training of 297 models, our findings show that the regression task yields slightly
better results than the classification task in most cases. Furthermore, The results indicate that the prediction
accuracy is primarily influenced by factors such as the TO problem, material category, and data scale. Conversely,
factors such as the domain size and the material property have minimal impact on the accuracy.

KEYWORDS
Multi-material; topology optimization; convolutional neural networks; deep learning; finite element analysis

1 Introduction

Topology optimization, as an effective method for structural design, has garnered significant
attention and application. The fundamental principle of topology optimization is to generate an
optimized structure by distributing materials within a design domain, considering given loads and con-
straints. Over the years, various topology optimization methods have been proposed and developed,
including Homogenization Design Method (HDM) [1,2], Solid Isotropic Material with Penalization
(SIMP) method [3–5], Level-Set Method (LSM) [6,7], Evolutionary Structural Optimization (ESO)
method [8], Moving Morphable Component (MMC) method [9,10], phase field method [11] and so
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on. These methods predominantly rely on gradient algorithms and iterative optimization, necessitating
finite element analysis (FEA) at each iteration. With the rapid advancement of additive manufacturing
(AM) technology, the manufacturing challenges associated with complex structures designed through
topology optimization have significantly diminished. Consequently, topology optimization has gained
further traction, leading to the rapid development of research in three-dimensional design [12,13],
multi-material design [14,15], multiscale design [16–18], and others [19].

In order to achieve improved structural performance or cost-effectiveness, researchers have long
focused on the study of multi-material topology optimization. MMTO has primarily been developed
based on binary topology optimization methods. Consequently, according to the classification of
several traditional topology optimization methods, the multi-material topology optimization work
that has been carried out mainly includes: homogenization method [20–22], SIMP method [23–25],
level-set method [26–30], ESO method [31,32], and others [33–35]. One common challenge in MMTO
is the increase in the number of design variables as the number of materials increases. Additionally,
the inclusion of more discrete elements in finite element analysis further amplifies the number of
design variables. Consequently, MMTO encounters significant computational resource requirements
when dealing with large-scale computational objects. The necessity for high-performance computing
resources and the substantial time requirements remain major challenges for the widespread imple-
mentation of MMTO at a large scale.

In recent years, the rapid advancements in computer hardware technology and artificial intelli-
gence (AI), particularly in the field of deep learning using neural networks, have led to their widespread
adoption in various traditional domains. In parallel, researchers have explored the integration of
topology optimization with neural networks to enhance and optimize structural design. Among the
various research directions, the data-driven topology optimization (DDTO) method, as an accelerated
solution process, is one of the most important research directions. The primary objective of DDTO
is to alleviate the computational burden and conserve computing resources during the analysis and
optimization stages. Its core concept revolves around leveraging neural networks, known for their
excellent fitting capabilities, as function approximators. Specifically, the neural network learns the
inherent rule from existing data samples, enabling it to swiftly solve new problems. Researchers
often refer to the trained neural network as a “surrogate model”. Within topology optimization, this
surrogate model can directly predict or generate the optimal structure given specific design conditions,
effectively replacing the entire topology optimization process and enabling rapid solution generation
without the need for iterations. For instance, Zhang et al. [36] developed a convolutional neural
network model which identified the optimization structure without any iteration. Abueidda et al. [37]
applied ResUnet [38] to build a data-driven surrogate model that can quickly predict the two-
dimensional nonlinear structure topology optimization without any iteration. Of course, there is a lot
of related works which will be detailed in Section 2.1. By substituting the neural network model for
the entire topology optimization process, the optimized structure can be rapidly obtained, significantly
reducing the time required and accelerating the design process. Multi-material topology optimization
has always been computationally complex, slow in convergence, and computing resource-intensive.
Therefore, the development and application of deep learning technology offer an effective approach
to enhance and optimize MMTO. At present, most studies on the combination of DL and TO are
limited to the optimization of single-material (binary) structures, and few studies on the multi-material
design [14]. Whether the MMTO method based on deep learning can develop a novel method for fast
solution and explore the factors affecting the modeling needs further research.

In this study, we propose a novel framework for accelerating the MMTO using deep learning.
Our approach is based on a data-driven approach that utilizes convolutional neural networks to build a
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surrogate model to solve a multi-material topologies. Here, a novel coding method combining MMTO
and neural network is proposed. The coding method enables the creation of a surrogate model that can
rapidly generate multi-material topologies without the need for iterations. To train the neural network,
the phase field method is adopted to generate a series of MMTO datasets. The input and output of
our network are a multi-channel matrix, with each channel of the input representing a different initial
condition and each output channel representing a distribution of a material. The experimental results
demonstrate the multi-material topology obtained by the proposed coding method has clear material
boundaries and high prediction accuracy. In addition, in order to choose the appropriate surrogate
model mapping between regression and classification tasks, the proposed framework can identify
higher-precision surrogate models within the same dataset. Lastly, through a series of experiments,
we investigate the key factors that influence the construction of surrogate models for MMTO. The
obtained results will provide valuable guidance for future research in the field of multi-material
topology optimization, particularly in the context of deep learning.

The remainder of the paper is as follows. Section 2 reviews the related literature and multiphase
topology optimization. In Section 3, we describe the proposed approach in detail, including the
multiphase topology optimization framework using deep learning, data generation, network archi-
tecture, loss function, and evaluating metrics. In Section 4, we elaborate the experimental results and
discussion. Finally, Section 5 concludes the paper and discusses the future works.

2 Overview of Related Works

In this section, we will focus on deep learning for topology optimization and multiphase topology
optimization.

2.1 Deep Learning for Topology Optimization
In recent years, there has been a surge in research efforts aimed at leveraging deep learning

techniques to reduce the computational burden of topology optimization and accelerate the design
process. Li et al. [39] proposed a non-iterative topology optimization method that utilizes deep learning
for the design of conductive heat transfer structures. The network model takes a set of matrices
representing the boundary conditions as input and generates the optimized structure as output. The
topology optimizer can provide accurate estimation of conductive heat transfer topology in negligible
time. In subsequent work [40,41], some changes occurred in the form of model inputs which may
include initial stress or displacement field. Lei et al. [42] proposed a data-driven real-time topology
optimization paradigm under a moving morphable component-based framework. This method not
only reduces the dimension of parameter space but also improves the efficiency of optimization
process. Yu et al. [43] and Nakamura et al. [44] utilized a CNN model trained on a large number
of samples to predict final optimization structures directly, without the need for iteration. Then,
Ates et al. [45] proposed the method though introducing a two-stage convolutional encoder and
decoder network. Their approach can improve the prediction performance and reliability of network
models relative the single network. Xiang et al. [13] proposed a deep CNN for 3D structural topology
optimization, which can predict a near-optimal structure without any iterative scheme. The common
characteristic among these studies is that the optimal structure can be obtained through the neural
network model without the entire solving process. This significantly accelerates the design process.
However, there may be some limitations, such as the occurrence of disconnection phenomena in the
output structures and the limited applicability of the obtained CNN models. While these approaches
have greatly improved the speed of the optimization process, they may have some limitations.



4 CMES, 2024

Compared with replacing the whole TO process directly with neural networks, there are also
some works that use neural networks to replace the partial process in topology optimization, such
as finite element analysis and so on. The methods and strategies used in these works show a diversified
development trend. Several works [46–50] have used neural networks to replace or reduce finite element
analysis. What these approaches have in common is training a neural network model to replace
complex calculations, and then reducing the cost of the calculations. In addition, Sosnovik et al. [51]
used neural networks to map the intermediate structure in the iterative process directly to the final
optimized structure. This method reduces the number of iterations and improves the efficiency of
the optimization process. Similarly, Banga et al. [12] applied the 3D convolutional neural network to
accelerate 3D topology optimization. In this method, the intermediate results of the traditional method
ware used as the input of the neural network, which can reduce the computational cost. Similar to the
above two works [12,51], the method proposed by [52] divides the structure image into overlapping
sub-modules. The sub-modules are then mapped to optimized sub-structures using the model and the
complete structure is obtained by integrating these sub-structures. Samaniego et al. [53] mentioned
the idea of using deep neural networks as a function fitter to approximate the solution of partial
differential equations (PDEs), which has made important advances in efficiency. Yan et al. [40] used
the initial principal stress matrix of the structure as the input variable of the model, and can obtain
the prediction topologies with higher accuracy on the basis of fewer samples. Compared with the
traditional TO method, the proposed method can get similar results in real time without repeated
iteration. Wang et al. [54] utilized neural networks to build a mapping network of low-resolution
structures to high-resolution structures. Then, the low-resolution structure generated by SIMP method
is combined with the neural network to quickly obtain the high-resolution structure. By utilizing neural
networks to replace certain steps of the topology optimization process, this approach simplifies the
overall process and reduces computational time. Generally, this method still relies on a traditional
iterative process to support the generation of the final output structure, which does require a certain
amount of time. Nevertheless, the performance of the obtained structure is comparable to that achieved
by traditional methods.

To address the computational challenges associated with generating datasets, neural network
models combined with generative adversarial network (GAN) [55] and CNN are employed to
actively generate structures. This approach aims to reduce computational costs and facilitate diverse
design exploration [56–61]. In addition, some researches [14,62–66] applied neural network as an
optimizer to carry out TO design, which is called neural reparameterization design. The essence of
reparameterization design is to use the ability of neural network to automatically update parameters as
an optimizer, which does not require datasets and requires iteration similar to traditional TO methods.
The purpose of reparameterization is to represent the structure with fewer design variables, thereby
reducing the computational load of the optimization process. We mainly focus on the application of
neural network building surrogate models in topology optimization, and other characteristic methods
will not be described here. Readers can also refer to the review articles [67,68], which provide a
comprehensive summary and introduction to the use of deep learning in TO.

In summary of the above work, we find that there is less research work on deep learning to
accelerate MMTO design. There may be the following reasons for the lack of relevant studies. First,
the generation and processing of datasets for MMTO are relatively complicated, so it is a challenging
research to choose the method to generate high-quality datasets. Second, the effective combination
of MMTO and neural network is another difficulty. What kind of combination method can fully
consider the volume constraints of the multi-material, and output the multi-material topologies with
clear material boundaries. Third, the mapping modeling method also needs to be further studied,
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which is different from single-material topology that uses a matrix of structure size as the output.
The multi-material topology can be represented by multiple matrices where each matrix represents a
material, or it can be represented by a matrix with different values representing different materials.
At the same time, the characteristics of regression task and classification task for mapping methods
should be studied, and the mapping method more suitable for MMTO should be explored. To this
end, we will conduct a specific study on the above problems, and introduce several evaluating metrics
to evaluate the performance of neural networks for MMTO. Finally, the guidelines for constructing
high-precision surrogate models of MMTO are provided through extensive comparative analysis.

2.2 Multiphase Topology Optimization
Compared with the binary phase topology optimization problem, the multiphase topology

optimization problem is more complicated and more difficult to calculate by algorithm. For example,
in the calculation of multiphase topology optimization problems, the most important aspect is the
representation of the material property tensor as a function of physical properties and local volume
fractions of individual phases. Here, we will focus on the multiphase topology optimization method
proposed by [25,69]. In this section, the statement of a typical multiphase topology optimization
problem will be presented.

Figure 1: Schematic representation: (a) the topology optimization problem of statically linear elastic
structures under single load, (b) the design domain � composed of p = 4 material phases

Fig. 1a describes the general topology optimization of statically linear elastic structures under
single load. The design domain of topology optimization problems is denoted by �. The design domain
� ⊆ Rd(d = 1, 2, 3) is defined as an open set corresponding to the d-dimension. As shown in the
Fig. 1a, the design domain is mainly composed of linear isotropic elastic materials, fixed domains
and void materials with near zero Young’s modulus. The external body force f and the boundary
traction force t will obtain a displacement field u. Here, the solution of a linear elastic system can
be expressed as:⎧⎪⎪⎨
⎪⎪⎩

−divσ (u) = f in �

u = u0 on �1

σ (u) · n = 0 on �2

σ (u) · n = t on �3

(1)

where σ represents the stress tensor, u0 represents the prescribed displacement on the Dirichlet
boundary condition �1 [1,25], n represents the outward normal to the boundary, �2 represents the
Neumann boundary condition. t represents the traction portion of the structure with the environment
through the boundary traction condition �3. Here, the whole boundary condition consists of three
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parts: � = ∂� = �1 ∪ �2 ∪ �3. In addition, the strain tensor ε at any point x ∈ � is given in the usual
form as:

ε(u) = 1
2

(∇u + ∇uT
)

(2)

The stress tensor σ can be calculated by the following expression:

σ (u) = Eε(u) (3)

where E represents the elasticity tensor.

In this paper, we consider using p different types of material phases whose material density at a
given location x is expressed as an ordered parameter field α(x) = [

α1, α2, . . . , αp

]T
. The goal of the

multimaterial topology optimization problem is to find the optimal distribution of p number of distinct
materials inside �. For each αi, there will be the following point-wise bound constraints:

0 � αi � 1, i = 1, . . . , p (4)

Here, the inequalities are understood componentwise. Since the desired design does not allow gap
and overlap, the sum of volume fractions at each point should be equal to one unity. The physical
relationship can be expressed as:

p∑
i=1

αi = 1 (5)

In many topology optimization problems, there is usually a global volume constraint on the total
volume of each material inside �.∫

�

αidx = Vi|�|, i = 1, . . . , p (6)

p∑
i=1

Vi = 1, 0 � Vi � 1 (7)

where Vi is a parameter defined for the total proportion of each material. These constraints are mainly
volume constraints in topology optimization problems. Fig. 1b illustrates that in equilibrium state,
material phases (p = 4) will occupy the entire material domain of the structure in separate regions
� = (�1, �2, �3, �4). In addition, different material phases do not overlap and can be expressed as:

�i ∩ �j = ∅, i �= j (8)

If the volume fraction field of one material is removed, the above problem becomes the problem
of solving p − 1 unknown topology indicator fields. This way often occurs in binary phase topology
optimization problems.

In addition, the material properties of each region are determined by the corresponding material
phase. The elasticity tensor at a given location x is given by E(x) = E(α(x)). Here, referring to the
principle of SIMP method, the material interpolation operator using linear interpolation [69] can be
expressed as:

E(α) =
p∑

i=1

αq
i Ei (9)
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where Ei represent the constant elasticity tensor corresponding to phase i-th. As discussed by [35],
one of the main features of penalization schemes for multi-material TO problems is to ensure that
unique material phases exist at each point in the design domain. Therefore, the penalization schemes
designed here can effectively prevent overlap between material phases. In addition, as mentioned by
[70], the interpolation of elastic tensors based on Eq. (9) is inherently unreasonable as it can lead
to non-realistic physical data. Following their recommendations, a rational interpolation scheme
involves computing the Hashin-Shtrikman lower and upper bounds for each physical property.
Subsequently, the interpolated elastic tensor is calculated by replacing its components with the
corresponding average Hashin-Shtrikman bounds. As highlighted by [71], in practical computational
processes, finding the Hashin-Shtrikman bounds for an arbitrary number of phases is not always
straightforward. Additionally, under certain conditions, the volume fractions and physical properties
of the original phases can reach the Hashin-Shtrikman bounds. Therefore, this study relies solely on
the aforementioned relationships to construct the model problem and cautions readers to exercise
extreme caution when utilizing this relationship.

Here, for the basic minimum compliance problem in structural optimization, the objective
function is as follows:

minimize C(u, α) =
∫

�

f · ud� +
∫

�3

t · ud�

subject to:
p∑

i=1

αi = 1

∫
�

αidx = Vi |�|, i = 1, . . . , p

0 � αi � 1, i = 1, . . . , p

1
2

∫
�

εij(u) : Eijkl(α)εkl(v)d� =
∫

�

f · vd� +
∫

�3

t · vd�, for all v ∈ U

(10)

where “:” represents the second-order tensor operator and v represents the virtual displacement in
the displacement fields within the kinematically admissible range. Here, the gradient of the objective
function can simply be calculated using classical adjoint approach.

3 Detailed Approach
3.1 The Multiphase Topology Optimization Framework Using Deep Learning

The calculation principle of multiphase topology optimization follows a similar approach to
binary phase topology optimization. The solution process involves iterative calculations using the
finite element method, which can be computationally demanding, particularly for complex multiphase
design problems. In Fig. 2, we illustrate the solution process for multiphase topology optimization,
which includes initial design variables, update variables, finite element solution, sensitivity analysis,
and sensitivity filtering. To address the challenges posed by the iterative nature of the traditional
approach, our main objective is to develop a deep neural network as a surrogate model. This
surrogate model aims to generate multiphase optimization structures in a non-iterative manner. Fig. 2
presents the proposed deep learning framework designed for multiphase topology optimization. This
framework encompasses three key processes:
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Figure 2: Flowchart showing the framework of multiphase topology optimization using deep learning

Data preparation. We employ three classical topology optimization problems to generate diverse
datasets of varying scales in this party. Each data sample in the dataset consists of a multi-channel
matrix generated from the input parameters and the corresponding optimized structure. Different
datasets are generated by changing the topology optimization problem, the design domain size, the
number of material category, and the material properties. To ensure a uniform distribution of the
sample design space, we generate the dataset through random sampling. Subsequently, these datasets
are utilized as both training and testing data for the surrogate model.

Surrogate modeling. The multi-channel matrix represents the input, while the optimized structure
serves as the label for the mapping modeling task. In this study, we employ the feature pyramid
network (FPN) to learn the inherent laws within each dataset and utilize it as the surrogate model. It
is important to note that the mapping modeling can be viewed as either an image-to-image regression
task or a classification task, and the choice of the loss function is crucial in distinguishing between
these two tasks. The surrogate modeling process involves optimizing the weight parameters of the
neural network, with the objective of minimizing the selected loss function. For regression tasks, the
mean square error (MSE) and mean absolute error (MAE) are commonly employed as loss functions.
On the other hand, the cross-entropy loss (CEL) function is typically used as the loss function for
classification tasks. By selecting different loss functions, we can obtain different surrogate models.
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Model optimization. After constructing various surrogate models, the accuracy of surrogate mod-
els is evaluated by solving multiple multiphase topology optimization problems using new samples.
Subsequently, the surrogate model exhibiting the highest accuracy is chosen as the preferred model
for solving similar multiphase topology optimization problems. Furthermore, the test results from the
next stage can serve as a reference for determining the hyperparameters of the surrogate modeling
process.

3.2 Data Generation
This section details the data combinations for the topology optimization problems mentioned in

Section 4. As shown in Fig. 3, we prepare three types of datasets, which are generated by three classical
topology optimization problems (cantilever beams, Messerschmitt Bölkow Blohm (MBB) beams and
Michell beams). Because the methods of generating data by using several different TO problems are
similar, this paper mainly introduces the generation of multi-material topology optimization data
by using cantilever beam as the representative. The difficulty in generating data is how to represent
the volume constraints of each material and clearly represent the multi-material structural topology.
Therefore, we present a multi-material coding approach to better combine neural networks to build
surrogate models. In this study, the materials are linear elastic materials which conform to Hooke’s
law, and are represented as isotropic. Each topology optimization problem is used to generate multiple
datasets of different sizes. Each dataset consists of multiple topology optimization samples, each of
which includes information such as boundary conditions, loading conditions, volume fraction of each
material, and optimized structural topology (material distribution).

Figure 3: Geometries and boundary conditions corresponding to different topology optimization
problems

As illustrated in Fig. 4, the optimized cantilever structure of three-phase material (denoated as
M1, M2, M3) is utilized, incorporating multiple channels for the input and output of the neural
network. The design domain employs a nx × ny = 32 × 32 finite element mesh to discrete the linear
elastic structure. The boundary conditions of the cantilever are fixed to the left. Four-node element is
used in finite element analysis. The Young’s modulus (E) values for all phases are set as [9, 3, 1e-9],
and the Poisson’s ratio is set to 0.3 for all phases. The applied force on the structure is F = 1. The filter
radius (Rmin) is set to 2, while the penalty parameter q is set to 3. The parameters of samples primarily
include the loading angle, loading position, and volume fraction. The random conditions for these
parameters are subject to a uniform distribution, as described below:
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• Volume fraction: in accordance with Eq. (7)

• Loading position: the node selected from the nodes set at the right-hand side of the design
domain

• Loading direction: [0, 360°]

Figure 4: The input and output of neural network on the cantilever beam

Once the parameters are obtained, the 115 lines algorithm [69] is employed to generate samples
with varying dataset scales, such as 3000, 6000, 12000, 18000, 24000, 30000, and so on. In this section,
a novel approach is proposed to facilitate the learning of multimaterial constraints by generating data
with multiple condition channels for the input and several channels with the same number of material
types for the labels. As depicted in Fig. 4, each data can be represented as (X1, X2, X3, X4, X5, X6, X7,
Y1, Y2, Y3), where (X1, X2, X3, X4, X5, X6, X7) and (Y1, Y2, Y3) serve as the input and labels for the
neural network, respectively. The details of these channels are explained below. In the design domain,
the number of elements and nodes is 32 × 32 and 33 × 33, respectively. The ten channels are: X1, X2,
X3, and X4 with dimensions of 33 × 33, and X5, X6, X7, Y1, Y2, Y3 with dimensions of 32 × 32. The
values of the fixed nodes and free nodes are represented as 1 and 0, respectively. The ux and uy matrices
have a value of 0 everywhere except at the fixed nodes, where they have a value of 1 on the left-hand
side. Similarly, the load matrices Fx and Fy have a value of 0 everywhere except at the node where the
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load force F is applied. At the loading node, the pixel values are Fx = F cos θ and Fy = F sin θ in the
x and y directions, respectively. For the volume fraction channels (V1, V2, V3), each grid is filled with
the corresponding material’s volume fraction. As the labels for the neural network, each matrix (M1,
M2, M3) represents the distribution of the corresponding material.

For the other two classic topology optimization problems, the method and process of data
generation are identical to those of the cantilever beam. However, it is worth noting that, apart from
modifying the size of the design domains, the most significant variation lies in the load conditions.
The loading parameters for the MBB beam are outlined below:

• Loading position: the node chosen from the node set on the upper edge of the design domain

• Loading direction: [180, 360°]

For the Michell beam, the range of loading positions extends the lower edge of the design domain
in comparison to the MBB beam.

To ensure effective training of the surrogate model and accurate performance evaluation, each
dataset is partitioned into three subsets: the training set (80%), the validation set (10%), and the test
set (10%).

3.3 Network Architecture
The chosen network architecture for model training is the feature pyramid network [72], which

is a well-known convolutional neural network [73–75] integrated with a feature pyramid framework.
The FPN employs a top-down architecture with lateral connections to effectively capture multi-scale
information, enhancing the accuracy of prediction results. According to the characteristics of neural
network model, the size and number of input and output channels of the same surrogate model are
basically fixed. In this section, we will describe the details of the network architecture using the dataset
generated by the nx × ny = 32 × 32 cantilever beam described in Section 3.2 as an object. As shown
in Fig. 5, we use the 33 × 33 × 7 dimensional channel generated by the cantilever beam as input to
obtain the network architecture. Before the sample is fed into the neural network, the three channels
(X5, X6, X7) about volume fraction have been filled from 32 × 32 to 33 × 33 with rows and columns all
zeros, just like the filling process in convolution operations. Here, keeping the dimensions of all input
channels consistent is easy to calculate and ensures that convolution operations are not error-prone.
In this study, the convolution operation details of the specific FPN architecture are shown in Fig. 5.
It comprises four main components: bottom-up pathway, top-down pathway, lateral connections, and
aggregation.

Bottom-up pathway. The bottom-up pathway involves the extraction of features using a down-
sampling strategy, resulting in a substantial reduction in the size of the feature maps at each layer.
These feature maps at different layers collectively form multi-scale feature maps that effectively capture
the inherent law in the data. In this study, the ResNet18 [76] is employed as the backbone of the
architecture. As depicted in Fig. 5, the bottom-up pathway consists of five major layers denoted as
{B1, B2, B3, B4, B5}. Before the top-down pathway, the 33 × 33 × 7 dimensional input channel of
the network is converted to B1 (32 × 32 × 7) by using a 2 × 2 convolutional layer. Subsequently, B1 is
transformed into B2 through the utilization of a downsample block depicted in Fig. 6a. The bottom-up
pathway then acquires B3, B4, and B5 by reusing the aforementioned downsample block.

Top-down pathway. The lower-level feature map can be derived from the higher-level feature map
by employing an up-sampling technique. Furthermore, the fusion of high-level semantic information
and low-level details is achieved through lateral connections in the feature maps. As depicted in Fig. 5,
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the top-down pathway primarily comprises four layers denoted as {T2, T3, T4, T5}. Specifically, B5
employs a convolution operation with a 1 × 1 convolutional layer to generate T5. Subsequently, T5 is
further processed to yield T4 through the utilization of an upsample block illustrated in Fig. 6b. The
upsample block is then reused to sequentially obtain T3 and T2.

Figure 5: The architecture of FPN for the cantilever beam

Figure 6: Two kinds of building block: (a) downsample block, (b) upsample block

Lateral connections. Fig. 5 illustrates that the yellow layers and green balls play a crucial role in
the implementation of lateral connections. Within the lateral connection, a convolutional layer with a
1 × 1 kernel is utilized to reduce the dimension through element-wise addition between the upper and
lower feature maps. Here, all lateral connections have a number of 256 channels.

Aggregation. Because the feature maps at various levels of the top-down pathway have different
sizes, the sets {S2, S3, S4, S5} are generated through multiple convolutions using a convolution layer
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with 3 × 3 kernel, resulting in feature maps of size 16 × 16. As depicted in Fig. 5, S2, S3, S4, and S5 of
equal size and dimension are aggregated using an addition operation. By employing a convolutional
layer with a 1×1 kernel, the dimension of the aggregated feature maps is reduced to match the number
of label channels for prediction. Consequently, the final output of the network model is 32 × 32 × 3,
where each channel represents a material distribution. Through the combination of three channels, the
final optimal structure is obtained.

3.4 Loss Function
For the rapid solution of multi-material topology optimization problems using neural networks,

model training can be approached as either an image-to-image regression task or a classification task.
The choice of the loss function plays a crucial role in distinguishing between these two types of tasks. As
the loss functions, two commonly used error metrics for regression tasks, MSE and MAE are applied.
MSE measures the squared error between the predicted value and the ground truth. MAE measures
the absolute error between the estimated value and the ground truth. The formulations for two loss
functions are as follows:

LMSE = 1
pN

p∑
i=1

N∑
e=1

(
ŷie − yie

)2
(11)

LMAE = 1
pN

p∑
i=1

N∑
e=1

∣∣ŷie − yie

∣∣ (12)

where LMSE and LMAE represent the error values calculated for MSE and MAE, respectively. p represents
the number of material categories, and N represents the number of grid elements. ŷie represent
the predicted value, and yie is the target value. Noted that two models with the same architecture
but different loss functions are used, which will produce varying predictions because different loss
functions provide individual mapping strategies [77]. Despite both models being regression tasks, the
prediction performance of the two loss functions is evaluated using diverse datasets for comparison
purposes.

The cross-entropy loss function is commonly employed in classification tasks. The main goal of
the cross entropy loss function is to maximize the probability of the correct predictions using the
principle of maximum likelihood. Similarly, in this study, we adopt the CEL as the loss function for
multi-material problems. The formulation of the cross-entropy loss function is presented below:

LCEL = − 1
PN

p∑
i=1

N∑
e=1

yie log(ŷie) (13)

In the above equation, LCEL represents the calculated metric value for CEL. The parameters used
in Eq. (13) are the same as those in Eqs. (11) and (12). Specifically, the binary cross-entropy (BCE)
function is employed as the loss function for binary classification problems. Although BCE is typically
used for binary classification, it has been successfully applied to topology optimization and obtains
high precision results [45,51,78]. Notably, our work pioneers the application of CEL to solve multi-
classification problems in the context of multi-material topology optimization.
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3.5 Evaluating Metrics
To evaluate the performance of the surrogate model reasonably, we utilize three metrics: the

relative error of compliance (REC), the relative error of volume fraction (REV), and the MAE-based
prediction accuracy (ACC). Among these metrics, ACC is the most indicative metrics in this study.
The definitions of these metrics are as follows:

1. REC is defined as the relative error of the compliance between the predicted structure Ŷ and
the ground-truth structure Y.

REC = |C(Ŷ) − C(Y)|
C(Y)

(14)

where C(Y) and C(Ŷ) represent the compliance of structure Y and Ŷ, respectively.

2. REV is the relative error of the volume fraction between the predicted structure Ŷ and the
ground-truth structure Y.

Total Volume =
p∑

i=1

Vi = 1 (15)

Vi = 1
N

N∑
e=1

yie (16)

REV =
∑p

i=1

∣∣V̂i − Vi

∣∣
Total Volume

=
p∑

i=1

∣∣∣∣∣ 1
N

N∑
e=1

(ŷie − yie)

∣∣∣∣∣ (17)

where Vi represents the prescribed volume fraction corresponding to phase i-th, and V̂i represents the
volume fraction of phase i-th in the prediction structure.

3. During the process of model training, as well as after its completion, validation sets and test
sets are employed to evaluate the performance of the model. The accuracy performance, which
is evaluated based on MAE, is defined in Eq. (18). The defined accuracy expression is suitable
for both regression tasks and classification tasks.

ACC = 1 − MAE = 1 − 1
pN

p∑
i=1

N∑
e=1

∣∣ŷie − yie

∣∣ (18)

4 Experiment Results and Discussion

In this section, we begin by employing a widely used dataset of cantilever beams as the research
objects to assess the performance of the surrogate model. Subsequently, we investigate the connection
between topology optimization problems and the prediction accuracy, while also examining the impact
of training data scale on the prediction performance. The model training is implemented using a single
NVIDIA TITAN RTX card equipped with 32 GB of device memory, utilizing the Python open-source
package (PyTorch 1.4). We choose Adam [79] as the optimizer method to train the models.



CMES, 2024 15

4.1 Performance of the Surrogate Model
In this section, we assess the performance of the FPN model by selecting a dataset consisting

of 6000 generated from 32 × 32 dimensional cantilever beams as the research object. Subsequently,
three loss functions, namely MSE, MAE, and CEL, are employed to train the FPN model, yielding
distinct surrogate models. The setting of hyperparameters directly affects the performance of the neural
network model, but it cannot be updated by itself during training. In order to obtain the best model
generalization performance, model training needs to be terminated when overfitting begins. This
experiment prevents overfitting by using an early stopping method. Specifically, the model training
will be terminated if the validation accuracy (ACC) does not improve during 5 consecutive epochs. The
maximum training condition of this study is set at 500 epochs. After several experiments to explore
the hyperparameters, we set the batch size to 64 and the learning rate to 0.01 for each model.

Firstly, we examine the training performance of the FPN model, and the convergence history
of the loss value throughout the process with different loss functions is depicted in Fig. 7. The
curves displayed in Fig. 7 demonstrate that all three surrogate models exhibit stable convergence
performance in both the training set and the validation set. Additionally, these models demonstrate
minimal discrepancies between the validation loss and training loss. As the number of training epochs
increases, the results generated by the three FPN models approach the ground-truth results in terms
of quality. Regarding the comparison of convergence speed in this experiment, the MSE-Network
exhibits the fastest convergence, while the CEL-Network demonstrates the slowest convergence. Three
FPN models achieve relatively stable convergence within the initial 80 epochs, eventually converging
to the following values: MSE training loss of 0.009, MSE validation loss of 0.017, MAE training loss
of 0.028, MAE validation loss of 0.041, CEL training loss of 0.596, and CEL validation loss of 0.605.
It is important to note that different types of surrogate models can not directly compare the value of
the loss function to judge the performance due to the distinct principles of loss function composition.
Therefore, a comprehensive analysis of the performance of the three surrogate models is provided in
Fig. 8.

Figure 7: The convergence history of the loss value throughout the process with different loss function

Fig. 8 illustrates the convergence history of the three metrics (REC, REV, ACC) for the FPN
models, with each metric calculated as the mean value of all validation samples. As depicted in Figs. 8a
and 8b, the REC values for the MSE-Network, MAE-Network, and CEL-Network gradually converge
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to 0.0096, 0.0186, and 0.0395, respectively. Similarly, the REV values for the three models gradually
converge to 0.0200, 0.0250, and 0.0440, respectively. The order observed in both REC and REV metrics
is consistent, with the MSE-Network exhibiting the smallest error and the CEL-Network displaying
the largest error among the three models. Furthermore, Fig. 8c clearly demonstrates that the ACC
values obtained by the MSE-Network, MAE-Network, and CEL-Network ultimately converge stably
to 0.9530, 0.9590, and 0.9580, respectively. It is worth noting that the order of ACC values differs
from that of REV and REC, indicating a relatively independent nature of the three metrics within
each model. Initially, the convergence history of the metrics for all three models exhibited significant
fluctuations. However, as the model training progressed, all the aforementioned metrics tended to
converge steadily.

Figure 8: Metrics comparison of using different loss function in the validation set

Based on the statistics presented in Fig. 8, all three models have presented a good performance
on computing the new samples in the validation set. This not only demonstrates the feasibility of the
FPN architecture for surrogate modeling but also highlights the effectiveness of the developed models
in predicting the optimized multiphase structures under diverse condition parameters.

Fig. 9 displays the structures generated by the traditional method and the FPN models, along
with their corresponding metrics listed below. As observed in Fig. 9, the structures produced by
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the different FPN models closely align with the ground-truth structures. Additionally, Most of the
structures obtained by FPN model show remarkable similarity with the ground-truth. as indicated by
high accuracy values (REC and REV both less than 0.05, and ACC greater than 95%). This suggests
that the developed surrogate models possess a high level of prediction precision. Upon comparing the
evaluation metrics of the results from the three FPN models, it is evident that the prediction precision
of the MSE-Network and MAE-Network slightly surpasses that of the CEL-Network. Furthermore,
the prediction precision of the MSE-Network and MAE-Network is nearly identical. This implies that
regression tasks perform marginally better than classification tasks in the surrogate modeling of multi-
material topology optimization problems. However, the applicability of this observation to a broader
range of multi-material topology optimization problems requires further verification and investigation
through additional experiments.

Figure 9: Comparison of results between the ground-truth and prediction of FPN models

4.2 The Relationship between Topology Optimization Problems and the Prediction Performance
This section introduces twelve cases to examine the correlation between various topology opti-

mization problems and the prediction performance of FPN surrogate models. The specific parameters
for all cases are provided in Table 1. It can be observed from Table 1 that three classical TO problems
(cantilever beam, MBB beam, and Michell beam) are chosen as research subjects. These problems
encompass different design domain sizes, loading positions, fixed positions, and material category
quantities, resulting in the generation of a dataset comprising 6000 samples for each problem. It is
noteworthy that we employ MATLAB with 16 cores for parallel computation to generate the datasets.
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The dataset generation process exhibits a relatively swift performance. For instance, the generation
of 6000 data samples for Case4 in Table 1, which represents the cantilever beam with the highest
resolution and the maximum number of material category, is accomplished within a mere 4.47 min.
Similarly, the data set generation of Case8 (MBB beam) and Case12 (michell beam) requires the
longest duration in the same class of topology optimization problems. Specifically, dataset generation
of Case8 consumes 9.21 min, while dataset generation of Case12 takes 8.34 min. Despite the time
required for dataset generation, the overall time consumption remains within an acceptable range. The
hyperparameter settings for the model training process in this section are the same as in Section 4.1

Table 1: Design parameters of different topology optimization problems using different sizes

Case index Test problem Samples nx ny p E

Case1 Cantilever Beam 6000 32 32 3 [3 1 1e-9]
Case2 Cantilever Beam 6000 64 64 3 [3 1 1e-9]
Case3 Cantilever Beam 6000 32 32 4 [9 3 1 1e-9]
Case4 Cantilever Beam 6000 64 64 4 [9 3 1 1e-9]
Case5 MBB Beam 6000 64 32 3 [3 1 1e-9]
Case6 MBB Beam 6000 128 64 3 [2 1 1e-9]
Case7 MBB Beam 6000 64 32 4 [9 3 1 1e-9]
Case8 MBB Beam 6000 128 64 4 [4 2 1 1e-9]
Case9 Michell Beam 6000 64 32 2 [1 1e-9]
Case10 Michell Beam 6000 64 32 3 [3 1 1e-9]
Case11 Michell Beam 6000 64 32 4 [9 3 1 1e-9]
Case12 Michell Beam 6000 64 32 5 [27 9 3 1

1e-9]

Fig. 10 presents the performance of different FPN surrogate models using various cases from the
test set. By comparing the experimental results of Case1 to Case4, it is observed that the prediction
precision of Case1 and Case2 is nearly identical, as is the case for Case3 and Case4. However, the
prediction precision of Case1 to Case2 is superior to that of Case3 to Case4. This suggests that changes
in design domain sizes do not significantly impact the prediction precision of the surrogate models,
while an increase in material category quantities leads to a decrease in prediction precision for the
same topology optimization problem. Similarly, even though the research domain transitions from a
cantilever beam to an MBB beam, the experimental results of Case5 to Case8 still exhibit the same
pattern. Here, we assume that the Young’s modulus (E) does not affect the prediction precision, as it
does not participate in the model training. This assumption is validated by the experimental results
of Case5 to Case8, where the change in Young’s modulus (E) from [3, 1, 1e-9] to [2, 1, 1e-9] does not
impact the pattern observed in Case1 to Case4. Therefore, to further assess the influence of material
category quantities on prediction precision, Case9 to Case12 are designed to utilize four different
material category quantities for the Michell beam. Clearly visible in Case9 to Case12 of Fig. 10 is the
continuous decrease in prediction precision as the material category quantities increase from 2 to 5.
This can be attributed to the increase in the number of input and output channels of the model as the
material category quantities increase, thereby augmenting the mapping complexity and reducing the
prediction precision.
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Figure 10: Performance of different FPN surrogate models using different topology optimization
problems in the test set. Case1 to Case4, Case5 to Case8, and Case9 to Case12 consist of cantilever
beams, MBB beams, and Michell Beams, respectively. (a) REC, (b) REV, (c) ACC

In Fig. 10, when comparing the three FPN models within each case, it is evident that the ACC
values of the three models are nearly identical. However, the REV values of MSE-Network, MAE-
Network, and CEL-Network gradually increase. Meanwhile, the size comparison of REC values of
the three models is similar to the law of REV values in most cases. If the prediction precision of the
surrogate models is solely based on the ACC value, the three FPN models are essentially equivalent.
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However, when considering the REC and REV values, it becomes apparent that MSE-Network
exhibits the highest prediction precision, while CEL-Network demonstrates the lowest prediction
precision among the three FPN models. This finding indicates that the regression task outperforms the
classification task in surrogate modeling for multi-material topology optimization problems, further
supporting the conclusion drawn in Section 4.1.

Fig. 11 showcases several examples of ground-truth and predicted structures, along with the
problem definition parameters, volume fractions, and prediction metrics. It is evident from Fig. 11 that
all three FPN models achieve a high prediction precision of over 95% in each example. Additionally,
the metrics (REC, REV, and ACC) of MSE-Network and MAE-Network generally outperform those
of CEL-Network in most examples. For instance, in Example 2, the REC values for MSE-Network,
MAE-Network, and CEL-Network are 0.006, 0.002, and 0.013, respectively. Similarly, the REV values
for these models are 0.017, 0.029, and 0.056, respectively. Furthermore, the ACC values for these
models are 98.1%, 97.5%, and 95.3%, respectively, which is the most representative metric among the
three. This observation highlights that, when evaluating surrogate modeling based on the evaluation
metrics, the regression task exhibits a slight superiority over the classification task.

The trained surrogate model enables rapid predictions of structural topology. In this part, we
present a comparative analysis between the surrogate model and traditional methods [69] to highlight
the speed advantage. It is important to emphasize that once the model is trained, the choice of loss
function has no impact on the prediction speed. Consequently, there are no significant differences in
the prediction speed among the MSE-Network, MAE-Network, and CEL-Network trained from the
same dataset. As a result, we typically select a representative surrogate model from the three options
to assess prediction time. For instance, in Example 1 of Fig. 11, the traditional method required
8.98 s to solve the topology, whereas the MSE-Network prediction took only 0.011 s. The traditional
method took 816 times longer than the surrogate model. Similarly, in Example 4, the traditional
algorithm took 16.21 s, whereas the MSE-Network prediction only consumed 0.010 s. In this case,
the traditional method took 1621 times longer than the surrogate model. These findings demonstrate
that the surrogate model achieves significantly shorter prediction times compared to traditional
methods, as it eliminates the need for finite element solving and multiple iterations. Through multiple
experiments, we consistently observed that the prediction time of the surrogate model remains around
0.01 s, regardless of variations in the design domain resolution and the number of material category.
This indicates that the prediction time of the surrogate model is independent of the specific topology
optimization problem.

4.3 The Relationship between the Training Data Scale and the Prediction Accuracy
In this section, we investigate the impact of the training dataset scale on the prediction perfor-

mance. To accomplish this, we select three topology optimization problems and generate datasets
with varying data scales for training the models. The dataset scales considered are 3000, 6000, 12000,
18000, 24000, 30000, and 36000. Table 2 presents the design parameters corresponding to each dataset
scale, including design domain sizes, the quantities of material categories, and the hyperparameters of
the model training. Each cantilever beam or MBB beam sample comprises seven input channels and
a label with three channels. On the other hand, each Michell beam sample consists of eight input
channels and a label with four channels. To assess the learning capability of the proposed model
across different topology optimization problems, the experiments involving the cantilever beam and
MBB beam utilize samples with the same quantities of material categories. Furthermore, the Michell
beam, which incorporates four different materials, is chosen as an experimental subject to examine the
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learning law and adaptability of the FPN models with respect to changes in the quantities of material
categories.

Figure 11: Comparisons between the ground-truth and the prediction of different FPN models
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Table 2: Design parameters of different topology optimization problems using different sample scales

Test problem Samples nx ny p E Batch size Learning rate

Cantilever Beam #3K 3000 32 32 3 [3 1 1e-9] 64 0.01
Cantilever Beam #6K 6000 32 32 3 [3 1 1e-9] 64 0.01
Cantilever Beam #12K 12000 32 32 3 [3 1 1e-9] 128 0.01
Cantilever Beam #18K 18000 32 32 3 [3 1 1e-9] 128 0.01
Cantilever Beam #24K 24000 32 32 3 [3 1 1e-9] 256 0.01
Cantilever Beam #30K 30000 32 32 3 [3 1 1e-9] 256 0.01
Cantilever Beam #36K 36000 32 32 3 [3 1 1e-9] 256 0.01
MBB Beam #3K 3000 64 32 3 [3 1 1e-9] 64 0.01
MBB Beam #6K 6000 64 32 3 [3 1 1e-9] 64 0.01
MBB Beam #12K 12000 64 32 3 [3 1 1e-9] 128 0.01
MBB Beam #18K 18000 64 32 3 [3 1 1e-9] 128 0.01
MBB Beam #24K 24000 64 32 3 [3 1 1e-9] 256 0.01
MBB Beam #30K 30000 64 32 3 [3 1 1e-9] 256 0.01
MBB Beam #36K 36000 64 32 3 [3 1 1e-9] 256 0.01
Michell Beam #3K 3000 64 32 4 [9 3 1 1e-9] 64 0.01
Michell Beam #6K 6000 64 32 4 [9 3 1 1e-9] 64 0.01
Michell Beam #12K 12000 64 32 4 [9 3 1 1e-9] 128 0.01
Michell Beam #18K 18000 64 32 4 [9 3 1 1e-9] 128 0.01
Michell Beam #24K 24000 64 32 4 [9 3 1 1e-9] 256 0.01
Michell Beam #30K 30000 64 32 4 [9 3 1 1e-9] 256 0.01
Michell Beam #36K 36000 64 32 4 [9 3 1 1e-9] 256 0.01

The experimental results are summarized in Fig. 12. As depicted in the figure, a clear trend in
the prediction precision can be observed. Overall, the prediction precision of the developed models
improves as the data scale increases. These results demonstrate that larger sample scales lead to higher
prediction precision of the FPN models. The performance of the models confirms that training the
surrogate model with a larger number of samples results in better prediction precision, assuming that
other parameters remain constant. Furthermore, Fig. 12 reveals three main laws or characteristics.

First and foremost, it is evident that the prediction precision of the obtained surrogate models
varies for different topology optimization problems, even when the sample scale remains the same.
For instance, in the case of the CEL-Network, the REC values for Cantilever Beam #3K and MBB
Beam #3K are 0.0401 and 0.0823, respectively. This discrepancy can be attributed to the fact that
the datasets generated by different topology optimization problems contain distinct information.
Consequently, the parameters in the obtained surrogate models differ, leading to variations in the
prediction precision. Moreover, when the data scale increases by the same magnitude, the improvement
in prediction precision varies across different surrogate models. For example, when comparing the test
cases ranging from Cantilever Beam #3K to Cantilever Beam #36K, the REC values of the CEL-
Network decreased by 57.6%. However, when examining the test cases ranging from MBB Beam #3K
to MBB Beam #36K, the REC values of the CEL-Network decreased by 72.5%.
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Figure 12: Performance of different FPN surrogate models using different sample scales in the test set

Secondly, it is evident from Fig. 12 that the MSE-Network consistently achieves the highest
prediction precision in most cases, while the CEL-Network exhibits the lowest prediction precision
among the three surrogate models obtained from the same dataset. As the data scale of a given TO
problem increases, the effect of improving prediction precision varies across the three surrogate models.
In general, the prediction precision of the MSE-Network shows a slight improvement, maintaining its
position as the model with the highest prediction accuracy among the three models. On the other hand,
the improvement in prediction precision of the MAE-Network demonstrates its unique characteristics.
Initially, when the data scale is small (Cantilever Beam #3K), the prediction precision of the MAE-
Network is significantly lower than that of the MSE-Network. However, as the data scale gradually
increases, the precision gap between the MAE-Network and MSE-Network diminishes step by step,
eventually resulting in almost identical prediction precision in the two models (Cantilever Beam
#36K). Furthermore, with the increase in sample scale, it is evident from the red bar chart in Fig. 12a
that the precision improvement of the CEL-Network is accompanied by some degree of volatility. This
phenomenon may be attributed to the fact that the output of the classification task lacks intermediate
transitional values that are present in the output of the regression task.
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Last but not least, in the FPN models trained using Michell beam samples, the minimum and
maximum ACC values were 90.2% and 94.9%, respectively. However, in the models obtained from
cantilever beam or MBB beam samples, the minimum ACC value exceeds 94%, and the maximum
ACC value can reach 98.4%. Similarly, the REC and REV metrics also follow the same trend. This
discrepancy can be attributed to the fact that cantilever beam or MBB beam samples are generated
from three materials, whereas Michell beam samples are generated from four materials. Therefore, it
can be concluded that the prediction precision of the FPN surrogate model decreases with an increase
in the number of sample materials, as also discussed in Section 4.2.

5 Conclusions

This paper focuses on the study of MMTO problems within the framework of multiphase topology
optimization using deep learning. For the first time, a CNN model is employed to construct a surrogate
model capable of predicting multi-material structural topologies with respect to different conditional
parameters. The key innovation of this research lies in the introduction of a coding method that
efficiently integrates the multi-material topology optimization problem with neural networks. The
obtained surrogate model enables rapid generation of multi-material structural topologies without
the need for iterative processes or the finite element analysis. Then, the solution time of the surrogate
model remains unaffected by the size of the design domain or the number of material categories. To
facilitate the learning process, a feature pyramid network is utilized to establish the mapping between
the input parameter channel and the corresponding output structural topology. Experimental results
demonstrate that the FPN surrogate models not only have high prediction precision but also have good
generalization ability.

Furthermore, a framework is proposed to determine the most suitable surrogate model mapping
for both regression and classification tasks. This framework aims to identify the surrogate model that
achieves high accuracy within the same dataset. Extensive experimental results demonstrate that both
regression and classification tasks can be employed as surrogate model mappings. However, in most
cases, the mapping constructed as a regression task outperforms the classification task. Regarding the
regression task, when dealing with small-scale data, the prediction accuracy of the MSE-Network
slightly surpasses that of the MAE-Network. As the data scale increases, the prediction accuracy
of the MSE-Network becomes nearly identical to that of the MAE-Network. Overall, the MSE-
Network exhibits the best prediction performance among the MSE-Network, MAE-Network, and
CEL-Network.

In addition to selecting the FPN models and configuring the hyperparameters, the experimental
results highlight several factors that influence the prediction accuracy of the surrogate model. These
factors primarily include the topology optimization problems, material category quantities, and the
data scales, while the irrelevant factors mainly include the domain size and the elastic modulus of
the material. Based on the findings, two general trends can be summarized. Firstly, an increase in
the quantity of material categories tends to decrease the prediction accuracy of surrogate models.
Secondly, a larger volume of training data leads to improved performance of the surrogate models.

In future work, we aim to expand the application of 2D multi-material topology optimization to
3D multi-material topology optimization problems. Furthermore, we are conducting further research
on the utilization of surrogate models and multi-materials method in multi-scale structural design. The
surrogate model based on neural networks offers a practical approach to expedite the analysis of macro
and micro structure properties. Simultaneously, the integration of multi-material design caters to the



CMES, 2024 25

diverse and functional requirements of microstructures, thereby accommodating a broader range of
design possibilities.
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