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ABSTRACT

The experimental results in previous studies have indicated that during the ductile fracture of pure metals, vacancies
aggregate and form voids at grain boundaries. However, the physical mechanism underlying this phenomenon
remains not fully understood. This study derives the equilibrium distribution of vacancies analytically by following
thermodynamics and the micromechanics of crystal defects. This derivation suggests that vacancies cluster in
regions under hydrostatic compression to minimize the elastic strain energy. Subsequently, a finite element model
is developed for examining more general scenarios of interaction between vacancies and grain boundaries. This
model is first verified and validated through comparison with some available analytical solutions, demonstrating
consistency between finite element simulation results and analytical solutions within a specified numerical
accuracy. A systematic numerical study is then conducted to investigate the mechanism that might govern the
micromechanical interaction between grain boundaries and the profuse vacancies typically generated during plastic
deformation. The simulation results indicate that the reduction in total elastic strain energy can indeed drive
vacancies toward grain boundaries, potentially facilitating void nucleation in ductile fracture.
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1 Introduction

The ductile fracture of metallic materials is primarily caused by the interaction between vacancies
generated by plastic deformation and other defects such as dislocations, grain boundaries, inclusions,
and pre-existing micro-voids. This interaction is the primary source of complexity in the mechanistic
understanding of ductile fracture, relating to how point defects (i.e., vacancies) interact with extended
defects, including the underlying microstructure [1]. For a fracture model with accurate predictive
capability at the macroscopic level, it is essential to comprehend the physical mechanism of ductile
fracture at the microscopic level. Tipper [2] and Puttick [3] were the first to reveal that ductile
fracture can be divided into three stages: void nucleation, growth, and coalescence. Subsequently,
Needleman et al. [4–6] developed models for void growth and coalescence based on experimental
results. Segurado et al. [7,8] investigated the impact of different critical physical parameters on
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void growth at the microscopic scale. Currently, there is a relatively clear understanding of the
micro-mechanisms of void growth and coalescence stages [9,10]. However, the fracture and material
science community has yet to reach a consensus on the void nucleation mechanism, and existing
models for void growth and coalescence presuppose a certain volume fraction of voids in the crystal
[11,12]. Although real materials’ microstructures invariably contain distribution defects introduced
by manufacturing or service history, little experimental evidence or theoretical analysis supports the
assumption of pre-existing voids in ductile fracture modeling [13]. Therefore, studying void nucleation
at the microscopic scale is necessary to enhance the predictive accuracy and applicability of these
models of void growth and coalescence [14].

Early experiments on ductile fracture indicated grain boundaries as the major nucleation sites
for voids [15–17]. More recent experiments by Noell et al. [18,19] demonstrated that the mechanism
of void nucleation is vacancy condensation. These experimental results suggest that the vacancy
concentration at grain boundaries is significantly higher than within the grain interiors. However, the
mechanisms underlying this phenomenon or theoretical conjectures remain unclear [20,21]. It has not
been thoroughly analyzed whether the configuration that vacancies accumulate more preferentially
at grain boundaries is energetically favorable. Since crystal defects involved in the mechanisms of
ductile fracture initiation can be well described in a unified theory [22,23], studying this issue from the
micromechanical perspective is both possible and intriguing. This study presents a micromechanical
model of vacancies and grain boundaries. We first derives an analytical solution for the equilibrium
distribution of vacancies at grain boundaries. Then, we develop a finite element numerical model to
study more general cases of interaction between vacancies and grain boundaries. This model assumes
several probability density functions to account for possible vacancy distributions at grain boundaries
in real materials. The conclusions drawn may shed light on the micro-mechanisms responsible for the
transition from plastic deformation to the formation of micro damages, such as micro-voids.

2 Thermodynamic Equilibrium Distribution of Vacancies at a Grain Boundary

In Section 2.1, an analytical model of the vacancies’ distribution in thermodynamic equilibrium
is derived. This model is then utilized in Section 2.2 to study the vacancies’ distribution near grain
boundaries.

2.1 Thermodynamic Modeling of Vacancy Equilibrium Distribution
Vacancies represent the most prevalent point defects in metallic materials, significantly impacting

the materials’ mechanical properties and responses under external thermal or mechanical loads [24].
Fig. 1a depicts the creation of a vacancy in a perfect lattice due to the absence of an atom. The
interaction forces between atoms compel those near the vacancy to deviate markedly from their
equilibrium positions in the perfect lattice, resulting in lattice distortion [25].

Figure 1: (a) Schematic diagram of generating a vacancy; (b) Micromechanical model of the vacancy
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The formation energy Ef of vacancies can be divided into two components: (i) the elastic energy;
and (ii) the residual energy, excluding the elastic energy, such as chemical and interface energies,
among others. To study the elastic field generated by vacancies, Eshelby [22] initially developed a
micromechanical model. In this model, vacancies are treated as spherical inclusions (illustrated by
the blue region in Fig. 1b) with an intrinsic volume change relative to the average atomic volume of
the corresponding perfect crystal. This key parameter to the continuum model, namely the atomic
volume relaxation (intrinsic change), can now be precisely calculated using atomistic methods like
molecular dynamics or density functional theory. This approach has seen broad application in the
micromechanical modeling of various physical problems [26,27]. The atomic volume relaxation is
defined as ΔΩ∗ = Ω∗ − Ω, where Ω∗ represents the volume associated with the vacant site, and Ω

denotes the atomic volume in a perfect crystal. Correspondingly, the eigen-strain [23] of the inclusion
for Fig. 1b takes the form

ε∗ =
⎡
⎣ ev 0 0

0 ev 0
0 0 ev

⎤
⎦ = ev

δij (1)

where ev = ��∗

3�
and δij is the Kronecker delta symbol. Assuming the material is isotropic with

Poisson’s ratio ν and shear modulus μ, and the radius of the spherical inclusion is R. Eshelby [28,29]
first provided the analytical solution for stress in this case as follows:⎧⎪⎪⎨
⎪⎪⎩

σ I
ij = −4μ (1 + ν)

3 (1 − ν)
ev

δij (r < R)

σ M
ij = 2μ (1 + ν) ev

3 (1 − ν)
R3

(
δij

r3
− 3xixj

r5

)
(r > R)

(2)

where σ I
ij is the stress inside the spherical inclusion; σ M

ij is the stress inside the matrix. According to
Eq. (2), the stress inside the inclusion is constant, and the stress outside the inclusion satisfies σ M

ii = 0.
Therefore, there is no elastic interaction between multiple vacancies. When calculating the elastic strain
energy of multiple vacancies, the strain energy of all vacancies can be directly linearly superimposed.
Assuming there are n vacancies in the system, and due to the presence of extended defects such as
dislocations, grain boundaries, etc., there exists residual stress σ R

ij inside the system. Then, the elastic
interaction energy between vacancies and residual stress σ R

ij can be calculated as follows:

Ev
int = − ∫

V
σ R

ij ev
ijdV (3)

In current model, we evaluate the elastic field of vacancies using the Eshelby spherical inclusions
model. The size of the spherical inclusions is comparable to the size of an atom. Therefore, we
can approximate that the stress of the extended defects is uniformly distributed within the spherical
inclusion, similar to the stress at the center of the spherical inclusion. As a result, the interaction

energy of the vacancy and the extended defect can be approximated as −3nσ R
H ev

�, where σ R
H ≡ σ R

ii

3
is

the hydrostatic stress of extended defects. Therefore, the free energy of the system can be calculated as

G (n) = nEf − 3nσ R
H ev

� + ER
e − TS (n) (4)

where ER
e is the elastic energy of extended defects; T is the absolute temperature; S (n) =

kB ln
N!

n! (N − n) !
is the configurational entropy of vacancies; kB is the Boltzmann constant; N is the
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number of lattice sites. According to Eq. (4), the chemical potential of vacancies can be calculated as

μv = ∂G
∂n

= Ef − 3σ R
H ev

� + kBT ln
cv

(1 − cv)
(5)

where Ef is the formation energy of vacancy; cv ≡ n
N

is the vacancy concentration. Since σ R
H is spatially

non-uniform, cv is also a function of spatial location, which can be simplified as

cv

1 − cv

= exp
(

μv − Ef + 3σ R
H ev

�

kBT

)
(6)

When σ R
H = 0, the distribution of vacancies is uniform. Assuming the uniform vacancy concen-

tration cv, substitute it into Eq. (6) and obtain the following:

cv

1 − cv

= exp
(

μv − Ef

kBT

)
(7)

Thereafter, combining Eqs. (6) and (7) gives rise to the distribution of vacancies in equilibrium
state (for cv, cv � 1).

χ (x) ≡ cv

cv

= exp
(

3σ R
H ev

�

kBT

)
(8)

The above equation defines the relative vacancy concentration χ (x). According to Eq. (8), χ (x)

decreases with the increase in σ R
H , indicating that vacancies tend to distribute in the negative hydrostatic

stress region. Due to the negative elastic interaction energy between vacancies and residual stresses,
there is a reduction in the system’s elastic strain energy. It is crucial to note that this derivation omits
the influence of image forces on the vacancy distribution and assumes an infinite system. Furthermore,
the focus is exclusively on the equilibrium distribution of vacancies, disregarding the kinetic effects of
vacancy diffusion.

2.2 Distribution of Vacancies at a Grain Boundary
Polycrystalline materials consist of numerous grains with varying orientations. The grain bound-

ary, the interface between two adjacent grains, is instrumental in defining the material’s mechanical
properties [30]. Despite the efforts that have been given for decades, it is still challenging to appropri-
ately incorporate grain boundaries into many micromechanical modeling, owing to the complicated
structures and properties associated with essentially an infinite set of possible grain boundaries
contained in a real material [30–32]. However, for a low-angle symmetric tilt grain boundary, a widely
accepted model describes the boundary using dislocations. As depicted in Fig. 2a, the grain boundary
is represented by a series of infinitely long edge dislocations with an identical Burgers vector; the
associated misorientation angle θ is determined by the Frank formulas [33].

d = b
θ

(9)

where d is the spacing between edge dislocations; b is the magnitude of the Burgers vector. Within
the linear theory of dislocations [34], the stress field of the grain boundary emerges as the linear
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superposition of the stress fields from each edge dislocation, leading to the following:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σxx = −σ0 sin (2πY) (cosh (2πX) − cos (2πY) + 2πX sinh (2πX))

σyy = −σ0 sin (2πY) (cosh (2πX) − cos (2πY) − 2πX sinh (2πX))

σxy = σ02πX (cosh (2πX) cos (2πY) − 1)

σzz = ν
(
σxx + σyy

)
(10)

where σ0, X , and Y satisfy the following relationship:

σ0 = μb

2D (1 − ν) (cosh (2πX) − cos (2πY))
2 , X = x

d
, Y = y

d
(11)

Figure 2: (a) Schematic of symmetrically tilted grain boundaries; (b) Hydrostatic stress field near grain
boundary, the unit is GPa; (c) Distribution of relative vacancy concentration near grain boundary

The parameters utilized in the model are enumerated in Table 1. Figs. 2b and 2c illustrate the
hydrostatic stress field near the grain boundary and the spatial distribution of the relative vacancy
concentration χ (x) according to Eq. (8). Notably, due to the mutual shielding of dislocation stress
fields, no long-range stress field exists at the grain boundary, with stress concentration primarily near it.
Consequently, the vacancy concentration distribution near the grain boundary is highly non-uniform.
In regions where the hydrostatic stress is negative, the local vacancy concentration exceeds the average,
whereas it falls below the average in areas with positive hydrostatic stress. Recent experimental findings
suggest that grain boundaries are primary nucleation sites for voids, with vacancy condensation as
the nucleation mechanism. The current analysis indicates a higher local vacancy concentration at
the grain boundary under thermodynamic equilibrium, facilitating void nucleation through vacancy
condensation, aligning with experimental observations [17,18,21].

Table 1: Relevant parameters for model analysis

Symbol Value Interpretation

μ 11 GPa Shear modulus
ν 0.3 Poisson’s ratio
ev −0.07 Eigen-strain of vacancy
b 0.25 nm Burger vector magnitude
� 0.01224 nm3 Atomic volume

(Continued)
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Table 1 (continued)

Symbol Value Interpretation

θ 2◦ Misorientation angle of grain boundary
T 300 K Temperature
kB 1.38 × 10−23 J/K Boltzmann constant

3 Development of the Finite Element Model

Since plastic deformation in actual materials involves dislocation slips (and potentially phase
transformations), these highly non-equilibrium irreversible processes likely result in vacancy distribu-
tions different from the equilibrium state previously discussed. Therefore, understanding the driving
forces behind the equilibrium distribution of vacancies at the grain boundary is crucial. According
to thermodynamic theory, this distribution can persist long enough for thermodynamically possible
damage processes like void nucleation to occur. Utilizing the unified micromechanics theory of crystal
defects, a finite element model is developed using the open-source software deal.II [35]. This model
will be applied in Section 4 to investigate the broader scenarios of interaction between vacancies and
grain boundaries during plastic deformation. Numerical validations for the developed finite element
model are subsequently conducted.

3.1 Numerical Validation of the Vacancy Elastic Field
The micromechanical model presented above for vacancies corresponds to an infinite medium.

However, in finite element simulations, only finite regions are considered. Before initiating the
simulation, determining the appropriate size of the region for obtaining sufficiently accurate numerical
solutions remains unknown. The required size for finite element simulations is approximated by
analyzing the distribution of the vacancy elastic strain energy. This energy is calculated as follows:

Eela = 1
2

∫ ∞

−∞
σijεijdV (12)

where σij and εij is stress and strain, respectively. By substituting Eqs. (1) and (2) into Eq. (12), an
analytical expression for the total elastic strain energy in an infinite isotropic medium containing a
vacancy is derived.

Eela = −8πμev2a3 (ν + 1)

3 (ν − 1)
(13)

A spherical region with a radius of nR, centered with the inclusion at the center of the finite element
simulation box, is then considered. The elastic strain energy stored is calculated using Eq. (12), but the
integration is confined within the spherical region. The ratio of the strain energy within this sphere to
that in the entire (infinite) medium (containing a vacancy) is subsequently calculated En (n ≥ 2), i.e.,

En = (ν + 1) + n3 (ν − 1)

3n3 (ν − 1)
(14)

Eq. (14) clearly shows that En is independent of the eigenstrain, inclusion radius, and shear
modulus, relating solely to the Poisson ratio and the size of the spherical region. Fig. 3 displays the
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relationship between En and n. It suggests that the elastic strain energy of vacancies is predominantly
distributed within a spherical region with a radius five times that of the inclusion. Beyond this region,
the elastic strain energy is almost zero, indicating minimal stresses. Hence, for simulating the elastic
field generated by vacancies using the finite element method, setting the region’s size to no less than
five times the radius of the inclusion yields relatively accurate results. Since the elastic strain energy at
the boundary is considerably smaller than inside the vacancy inclusion, the elastic field calculations
show little variation whether the simulations are performed with displacement constraints or stress-
free conditions.

Figure 3: Relationship between En and n

Consider a matrix with a cubic shape, an edge length of 1, and a spherical inclusion of radius
0.1 at its center. The units of length here and subsequently are all reduced (dimensionless). The finite
element simulation employs 8-node hexahedral elements with a 64 × 64 × 64 regular subdivision
mesh, imposing zero displacement constraints on the boundary conditions, with parameters as listed in
Table 1. All finite element simulations in this study are conducted using the open-source finite element
library deal.II [35].

Since the spherical inclusion only applies hydrostatic eigenstrain, the shear eigenstrain component
is zero. Analytical solutions (Eq. (2)) indicate that the normal stresses within the inclusions are
constant and equal, while the shear stress remains zero. Fig. 4 presents the finite element simulation
results for stress, closely mirroring the stress distribution characteristics. To further validate the finite
element model’s accuracy, a comparison of the simulation results for stress along the y-axis in the
cross-section plane (shown in Fig. 4) with the analytical solutions (illustrated in Fig. 5) is conducted.
The finite element simulation results and the analytical solutions closely align in regions distant
from the inclusion boundary. However, near the inclusion boundary, the discontinuity in eigenstrain
leads to greater discrepancies between the methods. The finite element simulation results show high
accuracy for the normal stresses but relatively lower accuracy for the shear stress component. The
primary sources of error include abrupt changes in eigenstrain at the inclusion interfaces and the use
of regular grids in the simulation. These errors are an acknowledged issue in the numerical modeling of
micromechanics with discontinuities and can be mitigated by using a finer mesh, albeit at the expense
of increased computational resources. However, this study’s ultimate goal is to analyze the elastic
interaction between vacancies and grain boundaries based on trends, and the current simulation results
are sufficiently accurate for these purposes (The details are discussed in Section 4).
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Figure 4: Finite element simulation results from stress (on the x = 0 plane) in GPa

Figure 5: Comparison of finite element simulation results and analytical solutions for stress (y-axis)
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3.2 Numerical Validation of Grain Boundary Elastic Field
In order to correctly implement micromechanical simulations of vacancy and grain boundary

interactions, the researchers first established a finite element model of the grain boundary and
validated its accuracy. As illustrated in Fig. 6, since dislocation lines can terminate only inside materials
at interfaces or other defects, dislocations in these simulations exist exclusively as dislocation loops
[36]. In the finite element simulation, a pair of grain boundary dipoles (each with equal but oppositely
directed Burgers vector magnitudes) is placed within a 200 nm square area, maintaining a 20 nm
separation. The magnitude of the edge dislocation Burgers vector is 0.25 nm, and the dislocation
slip plane thickness is 1 nm. Other simulation parameters, as listed in Table 1, include a calculated
7.1 nm spacing between edge dislocations using Frank’s formula. This finite element simulation
imposes displacement constraints on the boundaries.

Figure 6: Schematic diagram of finite element model for symmetric tilted grain boundaries

Fig. 7a displays the finite element simulation results of stresses generated by the grain boundary,
highlighting stress concentration near the grain boundary. Figs. 7b and 7c contrast these finite element
simulation results with the analytical stress solution. While the results align well in the direction
perpendicular to the grain boundary, there is less agreement parallel to it, indicating only a compatible
trend. This discrepancy primarily arises because the finite element simulation can consider only
a limited number of dislocations over a finite region. In contrast, the analytical solution involves
summing an infinite series of stress terms from each dislocation, leading to inevitable differences
between the analytical and numerical solutions. However, as Section 4 notes, only the qualitative
elastic interaction between vacancies and grain boundaries is analyzed, making these finite element
simulation results adequately sufficient.

4 Modeling the Interaction between Vacancies and the Grain Boundary

Section 2.1 suggests that the system’s entropy remains constant at a consistent temperature and
vacancy number. Consequently, the equilibrium distribution defined by Eq. (8) results in the system’s
lowest elastic strain energy among all potential vacancy distributions. The methodology involves
generating vacancy distributions that satisfy Eq. (8), calculating the system’s elastic strain energy E1,
and then randomly creating multiple sets of alternate vacancy distributions (not adhering to Eq. (8)),
followed by calculating the system’s elastic strain energy E2. If Eq. (8) holds true, then E1 will invariably
be lower than E2.
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Figure 7: (a) Finite element simulation results of stress generated by grain boundary, in GPa; (b)
Comparisons between the finite element simulation results and the analytical solutions of stresses
(Vertical grain boundary); (c) Comparisons between the finite element simulation results and the
analytical solutions of stresses (Parallel grain boundary direction)

Assuming the vacancy distribution is a function of the distance s from a spatial point to the grain
boundary, denoted as f (s), it is important to note that while f (s) does not encompass all possible
vacancy distributions, its random distribution parallel to the grain boundary renders it somewhat
representative. The assumed form of f (s) is as follows:⎧⎪⎪⎨
⎪⎪⎩

f (s) = k
sm

+ b, s0 ≤ s ≤ s1

f (s) = k
s0

m
+ b, s < s0,

(15)
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where k and b are undetermined constants; s0 and s1 are controllable parameters. As shown in Fig. 8a,
in finite element simulations, for the accuracy of numerical simulation, only the stress of grain
boundary pairs can be simulated. Assuming that the positions of the grain boundary are (−a1, 0)

and (a1, 0), respectively, f (s) must also be symmetric about the y-axis. For simplicity, this study only
considers the distribution of vacancies on the right half of the x-axis. Since there is a grain boundary
at x = a1, when x > 0, f (s) must also be symmetric about x = a1. Substituting the appropriate values,
it can be observed that the probability density function of the distribution of vacancies on the left and
right sides of the grain boundary at x = a1 is (assuming s0 = a3 and s1 = a2 − a1).⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1 (x) = k
(a1 − x)

m + b, 0 < x ≤ a1 − a3

f1 (x) = f2 (x) = k
a3

m
+ b, a1 − a3 < x ≤ a1 + a3

f2 (x) = k
(x − a1)

m + b, a1 + a3 < x ≤ a2

(16)

Figure 8: (a) Schematic diagram of the elastic interaction between simulated vacancies and grain
boundaries; (b) Probability density functions of vacancy distributions

Further assuming that f2(x) passes through a point (a2, p2), which, after the substitution into
Eq. (16), yields

b = p2 − k
(a2 − a1)

m (17)

The probability density function must satisfy the following relation within its domain of definition:∫ a1−a3
0

f1 (x) dx + ∫ a2
a1+a3

f2 (x) dx + ∫ a1+a3
a1−a3

f2 (x) dx = 1 (18)

It can be deduced by simultaneous equations and simplification that as long as p2 > 0 and p2 ≤ 1
a2

,

this condition can be met by controlling the parameter k. Therefore, it is now only necessary to adjust
the values of p2 and m to control the density of vacancy distribution at the grain boundaries. For a
certain m value, when p2 = 0, the distribution of vacancies at the grain boundaries is the densest, and
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when p2 = 1
a2

, the vacancies are uniformly distributed. Once p2 is given, the larger the m, the denser

the distribution of vacancies at the grain boundaries.

In the finite element simulations, a cubic region with a 100 nm side length is defined. Considering
that the stress field generated by vacancies is approximately null outside a region more than five times
the inclusion radius (refer to Section 3.1), and the vacancy count decreases with increasing distance
from the grain boundary, setting a2 = 40 nm is appropriate. The other parameters are set as a1 =
10 nm, a3 = 1 nm, and m = 1. Substituting these values into the equation yields the probability
density function for the vacancy distribution, as depicted in Fig. 8b.

Based on these vacancy distribution functions, 4,000 vacancies are positioned within the finite
element simulation area, with 2,000 vacancies on each side of the y-axis. These vacancies are distributed
according to a selected probability density function in the direction perpendicular to the grain
boundary and uniformly along the direction parallel to it. Fig. 9a illustrates the planar schematic of
the vacancy distribution around the grain boundaries for p2 = 7.5×106, 2.5×107. Eq. (8) describes the
vacancies’ equilibrium distribution, yet the model, constructed at the continuum scale, overlooks the
impossibility of coinciding vacancies. Consequently, applying Eq. (8) directly for generating vacancy
distributions leads to excessively high vacancy concentrations in very small regions, surpassing the
number of lattice points. Eq. (8) indicates that in areas where hydrostatic stress is negative, local
vacancy concentration exceeds the average. In order to avoid this problem, this study calculates the
stress field near the grain boundary through the analytical solution and then directly places the vacancy
in the region where the hydrostatic stress is less than zero. In contrast, the vacancy along the z direction
satisfies random distribution. This form of distribution is denoted as ψ, which approximately satisfies
the vacancy distribution given by Eq. (8). The vacancy distribution generated by this method is shown
in Fig. 9b. Since the energy of vacancies is much smaller than that of the grain boundaries, in order
to more clearly demonstrate the interaction between vacancies and grain boundaries, the radius of
the vacancy is assumed to be 1 nm, although the parameter is larger than the actual atomic radius, it
does not affect the analysis herein. The remaining simulation parameters follow those in Table 1 and
Section 3.2, with displacement boundary conditions applied in the finite element simulation.

Figure 9: (a) Schematic diagram of the vacancies distribution generated by f (s); (b) Schematic diagram
of the vacancies distribution satisfied ψ

Finite element simulation results show that when the vacancy distribution at grain boundaries
closely aligns with the equilibrium distribution (ψ ≈ χ ), the system’s total elastic strain energy is E1 =
8.24 × 10−16 J. Table 2 lists the system’s elastic strain energy for various p2 values. This shows that the
system has a lower elastic strain energy when the vacancies are distributed in the region of hydrostatic
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stress less than 0, thus proving the correctness of Eq. (8). It is noted that the finite element simulation
results exhibit numerical errors at the stress boundaries of vacancies, particularly in Section 3.1. The
errors are notably large for shear stress components. As there is no elastic interaction among vacancies,
their calculated elastic energy remains constant across different distributions using the same numerical
model. Likewise, the grain boundaries’ elastic energy stays constant as their locations are fixed. Various
vacancy distributions only affect the interaction energies Ev

int between vacancies and grain boundaries.
According to Eq. (3), Ev

int depends solely on the vacancies’ eigen-strain ev and the hydrostatic stress
σ R

H of the grain boundaries. Although the stress field of the vacancies has numerical inaccuracies in
the simulation results, it does not influence the interaction energy Ev

int. Consequently, these numerical
errors do not impact the study’s conclusion.

Table 2: Elastic strain energy of the system for different p2

p2 5 × 106 1 × 107 1.5 × 107 2 × 107 2.5 × 107

E2

(
10−16 J

)
8.70 8.58 9.85 9.72 10.9

During the void nucleation process, vacancies condense to form three-dimensional voids, which
in turn generate new voids, indicating that the elastic energy of the vacancies is released. The system
increases the surface energy of the voids while the voids generate elastic interactions with external
loads and grain boundaries, further reducing the system’s free energy. These factors influence the
thermodynamics and kinetics of void nucleation. Yang et al. [20] conducted research on void nucleation
by vacancy condensation and established a theoretical model that systematically considers the changes
in the system’s free energy before and after void nucleation. The results indicate that both the
activation-free energy barrier and the nucleation time required for void nucleation are closely related
to the local vacancy concentration. The higher the local vacancy concentration, the smaller the
activation-free energy barrier and the shorter the nucleation time required for void nucleation. In this
study, it is demonstrated that there is a higher local vacancy concentration at grain boundaries in an
equilibrium state. Combined with the work of Yang et al. [20], it is highly plausible for voids to nucleate
at grain boundaries, consistent with experimental observations [17,18].

5 Limitation

Several limitations associated with the current model warrant discussion and need to be addressed
in future works. Firstly, the simulation of vacancy and grain boundary elastic interactions is based on
the discrete dislocation model of the grain boundary in the current model. The stress field of the grain
boundary requires the superposition of the stress field from an infinite number of edge dislocations
before convergence is achieved. However, due to computational efficiency limitations, only a limited
number of dislocations can be placed in the finite element simulation to mimic the elastic field of
the grain boundary. Furthermore, it is assumed that the distribution configuration of vacancies at
grain boundaries satisfies the pre-assumed distribution. Nonetheless, the distribution of vacancies
at a certain point during ductile fracture may deviate from this pre-assumed distribution. To study
the interaction of vacancies and grain boundaries more accurately, incorporating microscopic/atomic
modeling is essential.
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6 Conclusion

In this study, an analytical model for the distribution of vacancies in thermodynamic equilibrium
is derived based on micromechanics theory. Subsequently, a finite element model for vacancies and
grain boundaries is established, and its correctness is verified by comparison with the analytical
solutions. Finally, based on this finite element model, the elastic interaction between vacancies and
grain boundaries is studied, and the correctness of the analytical model is validated. Particularly, it
is shown that in regions where the hydrostatic stress is less than zero, a higher concentration of local
vacancies is observed, and the lower the hydrostatic stress, the greater the tendency to promote a higher
local vacancy concentration, thereby helping to lower the system’s elastic strain energy. The current
findings may provide a micromechanical explanation for the experimentally observed void nucleation
at grain boundaries and may thus be further utilized in full-field simulations of void nucleation and
ductile fracture in metals.
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