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ABSTRACT

This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method (DQM)
for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node
distribution. Firstly, based on the first-order shear deformation theory, the governing equation of free vibration of a
functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect
to beam axial displacement, transverse displacement, and cross-sectional rotation angle by considering the effects
of shear deformation and rotational inertia of the beam cross-section. Then, ignoring the shear deformation of the
beam section and only considering the effect of the rotational inertia of the section, the governing equation of the
beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse
displacement. Based on the differential quadrature method theory, the eigenvalue problem of ordinary differential
equations is transformed into the eigenvalue problem of standard generalized algebraic equations. Finally, the first
several natural frequencies of the beam can be calculated. The feasibility and accuracy of the improved DQM are
verified using the finite element method (FEM) and combined with the results of relevant literature.

KEYWORDS
Timoshenko beams; functionally graded materials; dynamic characteristics; natural frequency; improved
differential quadrature method

1 Introduction

Functionally graded materials (FGMs) are a new kind of material whose physical properties
gradually change in one or more directions. This continuity of material properties overcomes many
shortcomings of bonded materials. After several years of development, the application of functionally
graded materials has expanded from the initial aeronautical field to the engineering field, such as
nuclear power engineering, civil engineering, and others. The dynamic characteristics of functionally
graded beams have always concerned scholars. Generally, establishing physical models that accurately
reflect the laws of mechanics and the solution of corresponding mathematical equations are two
critical steps in analyzing engineering structures. Due to the nonlinearity of the material properties
of functionally graded beams, it is difficult to obtain analytical solutions for the dynamic governing
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equations of such structures. Therefore, numerical methods have become commonly used for solving
mathematical equations.

Many studies have been devoted to the dynamic characteristics of functionally graded beams.
Kirlangic et al. [1] studied the dynamic characteristics of composite and functionally graded beams
using the Ritz and Newmark average acceleration methods. Shang Hsu [2] presented a free vibration
analysis of Timoshenko beam models using enriched finite element approaches. A two-node element
was suggested by Moallemi-Oreh et al. [3] to analyze the stability and free vibration of Timoshenko
beams. Tests showed high accuracy of the element in analyzing beams’ stability and finding its critical
load and free vibration analysis. Xu et al. [4] performed the free vibration analysis of Timoshenko
beams with various combinations of boundary conditions by using the discrete singular convolution
(DSC). For the free vibration of functionally graded beams whose physical properties changed along
the axis due to the elastic modulus, shear modulus, and density of axially functionally graded materials
changing continuously along the axis, the study of the free vibration of beams was complicated [5–7].
For the free vibration and stability of functionally graded beams with material properties varying along
the thickness direction, Sankar [8] assumed that Young’s modulus of the beam varied exponentially
through the thickness. An elasticity solution was obtained for a functionally graded beam under
transverse loads. Pu et al. [9] investigated the bending characteristics of functionally graded sandwich
beams using an improved Fourier method under classical and non-classical boundary conditions.
By comparing the results with other numerical methods, it was verified that the formula had high
convergence speed and accuracy, but the derivation of the formula was complex. Stojanovic et al. [10]
investigated the stability of uniform motion of multiple oscillators along a shear deformation beam on
a viscoelastic foundation. The fully stable region is determined and discussed according to the change
in the number of oscillators. Stojanovic et al. [11] studied the effects of the parameters of the laminate,
the damping coefficient, and the spectral density on the random stability of the composite laminate.
Qian et al. [12] studied the static deformations free and forced vibrations of FGMs cantilever beam
by the Meshless Local Petrov-Galerkin (MLPG) method. Xiang et al. [13] investigated the free and
forced vibration of a laminated functionally graded beam of variable thickness within the framework
of Timoshenko beam theory. Gao et al. [14–16] used the two-step perturbation method to solve
the nonlinear vibration governing equation, and the free vibration problem of beams with different
functionally graded distributions is studied. Stojanovic et al. [17] investigated the coupled vibration
and stability of multiple rectangular plates; the analytical solutions for the natural frequencies
and critical buckling loads of the plates were obtained. Zheng et al. [18] proposed a general two-
dimensional solution for cantilever FGMs beams under the Airy stress function. Huang et al. [19,20]
developed methods to solve the natural frequency and vibration modal functions of functionally
graded beams using the differential quadrature method. Choe et al. [21,22] studied the free vibration
characteristics of functionally graded beams with arbitrary boundary conditions using numerical and
semi-analytical methods.

Based on the literature review, there have been many studies on the vibration characteristics of
beams with different gradient distributions, and numerous numerical calculation methods have also
been proposed. However, they all suffer from the disadvantages of complex calculation processes and
difficult programming solutions. The differential quadrature method (DQM) is a widely employed
numerical technique for analyzing nonlinear structures owing to its straightforward solution process,
uncomplicated programming, and superior computational efficiency. The precision of the calculation
results of the method mainly depends on the discrete form of the nodes. This study modifies the
discrete form of the conventional differential quadrature method. A discrete form of distribution of
points in a proportional series is proposed, and the step size of nodes is adjusted by changing the
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common ratio to control the precision of numerical calculation. Thus, the dynamic characteristics of
FGMs beams along the thickness direction are investigated using the improved DQM. Firstly, based
on the first-order shear deformation theory, the governing equation of transverse free vibration of
a Timoshenko beam is transformed into the eigenvalue problem of ordinary differential equations.
Then, the differential quadrature method is applied to transform the eigenvalue problem of the derived
differential equation into the eigenvalue problem of standard generalized algebraic equations. Finally,
the first several natural frequencies of transverse free vibration of the FGMs beam can be calculated by
the QR method at one time. The method is verified by literature comparison and the mature numerical
calculation method, which showed the applicability and high efficiency of the proposed method for
solving variable differential equations.

2 Theoretical Formulations and Calculation Method
2.1 Beam Theory of Considering the Effects of Shear Deformation and Rotational Inertia of the
Cross-Section

Consider a Timoshenko beam made of ceramic-metal materials in this section. The beam’s length
was denoted as L, width as b, and height as h, with a rectangular coordinate system o(x,y,z) assumed
such that the x-axis was considered the neutral axis of a Timoshenko beam, the positive z-axis was
directed upward and perpendicular to the x-axis, and the origin was located at the centroid of the
rectangular section as shown in Fig. 1.

Figure 1: Schematic diagram of a beam with a gradient along the thickness direction

It was proposed that the parameters of the functionally graded materials adopt the linear mixing
rate model. Hence, the elastic modulus E (z) and density ρ (z) were assumed to follow power-law
functions in the thickness as Eq. (1).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E (z) = Em + (Ec − Em)

Å1
2

− z
h

ãp

ρ (z) = ρm + (ρc − ρm)

Å1
2

− z
h

ãp (1)

where Ec and Em are the elastic modulus of ceramic and metal materials, respectively; ρc and ρm are
the density of ceramic and metal materials, respectively; p is the volume fraction index of materials; ν

is the Poisson’s ratios of ceramics and metals. Free vibration characteristics of functionally gradient
beams based on first-order shear theory, the axial u and transverse displacements w at any point of a
beam could be expressed as Eq. (2).

u (x, z, t) = u0 (x, t) − zϕ (x, t) , w (x, z, t) = w0 (x, t) (2)
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The geometric equation is Eq. (3).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εx (x, z, t) = du0

dx
− z

dϕ

dx

γxz (x, z, t) = dw0

dx
− ϕ

(3)

where u0 and w0 are the axial and transverse displacement at any beam point, respectively; ϕ is the
cross-section angle; εx and γxz are the linear strains and shear strains at any point on the cross-section,
respectively. Based on the basic theory of Timoshenko beams, the normal stress σx and shear stress τxz

on the cross-section could be expressed as Eq. (4).⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σx = E (z) εx = E (z)

Ç
du0

dx
− z

dϕ

dx

å
τxz = G (z) γxz

κ
= E (z)

2 (1 + ν) κ

Ç
dw0

dx
− ϕ

å (4)

where E (z) and G (z) are the elastic modulus and shear elastic modulus of the materials, respectively;
ν is the Poisson’s ratio, κ = 6/5 is the correction factor of a Timoshenko rectangular cross-section
beam. Based on Eq. (4), the expressions of bending moment M, axial force FN, and shear force Q in
any section of the beam were stated as:

M =
∫

A

σxxzdA =
∫

A

E (z) z
Å

∂u0 (x, t)
∂x

− z
∂ϕ (x, t)

∂x

ã
dA

= ∂u0 (x, t)
∂x

∫
A

E (z) zdA − ∂ϕ (x, t)
∂x

∫
A

E (z) z2dA = D1

∂u0 (x, t)
∂x

− D2

∂ϕ (x, t)
∂x

(5a)

FN =
∫

A

σxxdA =
∫

A

E (z)
Å

∂u0 (x, t)
∂x

− z
∂ϕ (x, t)

∂x

ã
dA

= ∂u0 (x, t)
∂x

∫
A

E (z) dA − ∂ϕ (x, t)
∂x

∫
A

E (z) zdA = D0

∂u0 (x, t)
∂x

− D1

∂ϕ (x, t)
∂x

(5b)

Q =
∫

A

τxzdA =
∫

A

G (z) γxz

κ
dA =

∫
A

E (z)
2 (1 + ν) κ

Å
∂w0 (x, t)

∂x
− ϕ (x, t)

ã
dA

=
Å

∂w0 (x, t)
∂x

− ϕ (x, t)
ã ∫

A

E (z)
2 (1 + ν) κ

dA = Dxz

Å
∂w0 (x, t)

∂x
− ϕ (x, t)

ã
(5c)

where

D0 =
∫

A

E (z) dA =
∫

A

Em

ñ
1 +

Å Ec

Em

− 1
ãÅ1

2
− z

h

ãpô
dA = Embh

Ç
1 + Er − 1

p + 1

å
= Embhφ0 (6a)

D1 =
∫

A

E (z) zdA =
∫

A

Em

ñ
1 +

Å Ec

Em

− 1
ãÅ1

2
− z

h

ãpô
zdA = Embh2 − (Er − 1) p

2 (p + 1) (p + 2)
= Embh2φ1 (6b)
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D2 =
∫

A

E (z) z2dA =
∫

A

Em

ñ
1 +

Å Ec

Em

− 1
ãÅ1

2
− z

h

ãpô
z2dA = Embh3

12

ñ
1 + 3 (Er − 1)

(
p2 + p + 2

)
(p + 1) (p + 2) (p + 3)

ô
= Embh3

12
φ2 (6c)

where

Er = Ec

Em

, φ0 = 1 + Er − 1
p + 1

, φ1 = (Er − 1)
−p

2 (p + 1) (p + 2)
, φ2 = 1 + 3 (Er − 1)

(
p2 + p + 2

)
(p + 1) (p + 2) (p + 3)

As the beam was bent within the plane of its longitudinal symmetry, the equilibrium equations in
the x and z directions were considered as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂σx

∂x
+ ∂τxz

∂z
= ρ (z)

∂2u
∂t2

∂σz

∂z
+ ∂τxz

∂x
= ρ (z)

∂2w
∂t2

(7)

Then, Eq. (7) is integrated to derive Eq. (8).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
A

Å
∂σx

∂x
+ ∂τxz

∂z

ã
dA = ∫

A ρ (z)
∂2u
∂t2

dA

∫
A

Å
∂σx

∂x
+ ∂τxz

∂z

ã
zdA = ∫

A zρ (z)
∂2u
∂t2

dA

∫
A

Å
∂σz

∂z
+ ∂τxz

∂x

ã
dA = ∫

A ρ (z)
∂2w
∂t2

dA

(8)

Substituting Eq. (2) into Eq. (8) yields the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
A

Å
∂σx

∂x
+ ∂τxz

∂z

ã
dA = ∫

A ρ (z)

Ç
∂2u0

∂t2
− z

∂2ϕ

∂t2

å
dA = I0

∂2u0

∂t2
− I1

∂2ϕ

∂t2

∫
A

Å
∂σx

∂x
+ ∂τxz

∂z

ã
zdA = ∫

A zρ (z)

Ç
∂2u0

∂t2
− z

∂2ϕ

∂t2

å
dA = I1

∂2u0

∂t2
− I2

∂2ϕ

∂t2

∫
A

Å
∂σz

∂z
+ ∂τxz

∂x

ã
dA = ∫

A ρ (z)
∂2w0

∂t2
dA = I0

∂2w0

∂t2

(9)

where

I0 =
∫

A

ρ (z) dA =
∫

A

ρm

ñ
1 +

Å
ρc

ρm

− 1
ãÅ1

2
− z

h

ãpô
dA = ρmbh

Ç
1 + ρr − 1

p + 1

å
= ρmbhφ0 (10a)

I1 =
∫

A

ρ (z) zdA =
∫

A

ρm

ñ
1 +

Å
ρc

ρm

− 1
ãÅ1

2
− z

h

ãpô
zdA = ρmbh2 − (ρr − 1) p

2 (p + 1) (p + 2)
= ρmbh2φ1 (10b)

I2 =
∫

A

ρ (z) z2dA =
∫

A

ρm

ñ
1 +

Å
ρc

ρm

− 1
ãÅ1

2
− z

h

ãpô
z2dA = ρmbh3

12

ñ
1 + 3 (ρr − 1)

(
p2 + p + 2

)
(p + 1) (p + 2) (p + 3)

ô
= ρmbh3

12
φ2 (10c)
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where

ρr = ρc

ρm

, φ0 = 1 + ρr − 1
p + 1

, φ1 = − (ρr − 1) p
2 (p + 1) (p + 2)

, φ2 = 1 + 3 (ρr − 1)
(
p2 + p + 2

)
(p + 1) (p + 2) (p + 3)

Further derivation of Eq. (9) gave

∂FN

∂x
= I0

∂2u0

∂t2
− I1

∂2ϕ

∂t2
(11a)

∂M
∂x

− Q = I1

∂2u0

∂t2
− I2

∂2ϕ

∂t2
(11b)

∂Q
∂x

− q = I0

∂2w0

∂t2
(11c)

Substituting Eq. (5) into Eq. (11), the equilibrium differential equation for free vibration is
derived, considering the shear deformation and rotational inertia of the beam section.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0

∂2u0 (x, t)
∂x2

− D1

∂2ϕ (x, t)
∂x2

= I0

∂2u0

∂t2
− I1

∂2ϕ

∂t2

D1

∂2u0 (x, t)
∂x2

− D2

∂2ϕ (x, t)
∂x2

− Dxz

Å
∂w0 (x, t)

∂x
− ϕ (x, t)

ã
= I1

∂2u0

∂t2
− I2

∂2ϕ

∂t2

Dxz

Ç
∂2w0 (x, t)

∂x2
− ∂ϕ (x, t)

∂x

å
= q + I0

∂2w0

∂t2

(12)

Considering the free vibration of a beam, then the axial displacement u0, transverse displacement
w0, and cross-section angle ϕ can be expressed as Eq. (13).

(u0 (x, t) , w0 (x, t) , ϕ (x, t)) = (Ûu (x) , Ûw (x) , Ûϕ (x)
)

cos ωt (13)

where ω is the circular frequency of a beam, Ûu (x) , Ûw (x) , Ûϕ (x) are the vibration modal functions.
Substitute Eqs. (1), (2), (4), and (13) into Eq. (12). Dimensionless transformation

Ä
ξ , ÙU , ıWä =(

x, Ûu, Ûw)
/L, the equilibrium differential equation of a Timoshenko beam with FGMs was obtained

as Eq. (14).⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ÙU ′′ (ξ) − a1

ıW ′ (ξ) + a1 Ûϕ (ξ) − a2λÙU (ξ) − a3λÛϕ (ξ) = 0Ûϕ ′′ (ξ) + a4
ıW ′ (ξ) − a4 Ûϕ (ξ) − a5λÙU (ξ) − a6λÛϕ (ξ) = 0ıW ′′ (ξ) − Ûϕ ′ (ξ) + α7λıW (ξ) = 0

(14)

where

a1 = 6cφ2

κδ (1 + ν)
, a2 = δ2

ñ
cφ2

φ1

Ç
φ2 − φ2φ1

φ1

å
− φ1

12φ1

ô
, a3 = δ3

ñ
cφ2

φ1

Ç
φ2φ2

φ1

− φ3

12

å
+ φ

12φ1

ô
a4 = 6cφ1

κδ2 (1 + ν)
, a5 = cδ

Ç
φ2 − φ2φ1

φ1

å
, a6 = cδ2

Ç
φ2φ2

φ1

− φ3

12

å
, a7 = κ (1 + ν) φ1δ

2

6φ1

where c = 1
φ3−12φ2

2
/φ1

is the coefficient related to the gradient change law of material properties; δ = h/L

is the height-span ratio of a rectangular cross-section beam; λ = ρmAL4ω2

EmI
is the dimensionless frequency
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of a beam. The six dimensionless coefficients were as follows:

φ1 = 1 + α

p + 1
, φ2 = − αp

2 (p + 1) (p + 2)
, φ3 = 1 + 3α

(
p2 + p + 2

)
(p + 1) (p + 2) (p + 3)

φ1 = 1 + β

p + 1
, φ2 = − βp

2 (p + 1) (p + 2)
, φ3 = 1 + 3β

(
p2 + p + 2

)
(p + 1) (p + 2) (p + 3)

where K = Ec/Em, α = K − 1, K = ρc/ρm, β = K − 1.

The boundary condition of simply supported (S-S) beams:ÙU (0) = 0, ıW (0) = 0, Ûϕ ′ (0) = 0 (15a)ÙU (1) = 0, ıW (1) = 0, Ûϕ ′ (1) = 0 (15b)

The boundary condition of clamped-clamped (C-C) beams:ÙU (0) = 0, ıW (0) = 0, Ûϕ (0) = 0 (15c)ÙU (1) = 0, ıW (1) = 0, Ûϕ (1) = 0 (15d)

The boundary condition of free-free (F-F) beams:ÙU ′ (0) = 0, ıW ′ (0) − Ûϕ (0) = 0, Ûϕ ′ (0) = 0 (15e)ÙU ′ (1) = 0, ıW ′ (1) − Ûϕ (1) = 0, Ûϕ ′ (1) = 0 (15f)

The boundary condition of clamped-free (C-F) beams:ÙU (0) = 0, ıW (0) = 0, Ûϕ (0) = 0 (15g)ÙU ′ (1) = 0, ıW ′ (1) − Ûϕ (1) = 0, Ûϕ ′ (1) = 0 (15h)

2.2 Beam Theory of Ignoring the Shear Deformation of the Beam Section and Only Considering the
Effect of the Rotational Inertia of the Cross-Section

If the shear deformation was neglected and only the case of rotational inertia of the beam section
was considered, the axial displacement u0, transverse displacement w0, and section turning angle ϕ

needed to be decoupled in the derivation of the equation. Firstly, the
∂u0 (x, t)

∂x
is solved from Eq. (5b),

∂u0 (x, t)
∂x

= 1
D0

ï
FN + D1

∂ϕ (x, t)
∂x

ò
(16)

Substituting Eq. (16) into Eq. (5a), it is obtained

M =
Ç

D2
1

D0

− D2

å
∂ϕ (x, t)

∂x
+ D1

D0

FN (17)

Similarly, according to Eq. (11a)

∂2u0

∂t2
= 1

I0

∂FN

∂x
+ I1

I0

∂2ϕ

∂t2
= I1

I0

∂2ϕ

∂t2
(18)
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By substituting Eq. (18) into Eq. (11b), it is obtained

∂M
∂x

− Q = I1

I0

∂FN

∂x
+

Ç
I 2

1

I0

− I2

å
∂2ϕ

∂t2
(19)

Suppose q = 0. In this study, the pure bending deformation of a beam was investigated, as well as
the symmetric distribution of the material properties, so that FN = 0, associating Eqs. (11c) and (19),
it was obtained
∂Q
∂x

= I0

∂2w0

∂t2
(20a)

∂M
∂x

− Q =
Ç

I 2
1

I0

− I2

å
∂2ϕ

∂t2
(20b)

Substituting Eqs. (17) and (5c) into Eqs. (20), the derivative was simplified to obtain

∂2

∂x2

ñÇ
D2

1

D0

− D2

å
∂ϕ

∂x

ô
− I0

∂2w0

∂t2
−

Ç
I 2

1

I0

− I2

å
∂3ϕ

∂x∂t2
= 0 (21)

If the shear deformation is not considered, it can be obtained by substituting γxz = 0, ϕ = ∂w0

∂x
into Eq. (21).

∂2

∂x2

ñÇ
D2

1

D0

− D2

å
∂2w0

∂x2

ô
− I0

∂2w0

∂t2
−

Ç
I 2

1

I0

− I2

å
∂4w0

∂x2∂t2
= 0 (22)

Supposing ξ = x/L, w0 (x, t) = Ûw (x) cos ωt, then Eq. (22) is transformed intoÇ
D2

1

D0

− D2

å
d4Ûw (ξ)

dξ 4
+ ω2I0L4Ûw (ξ) + ω2L2

Ç
I 2

1

I0

− I2

å
d2Ûw (ξ)

dξ 2
= 0 (23)

Substituting Eqs. (6) and (10) into Eq. (23) and �2 = ω2ρmAL4

EmI
, it is obtained

d4Ûw (ξ)

dξ 4
+ �2 φ0φ0

12φ2
1 − φ0φ2

Ûw (ξ) + �2
δ2φ0

Ä
12φ

2

1 − φ0φ2

ä
12φ0

(
12φ2

1 − φ0φ2

) d2Ûw (ξ)

dξ 2
= 0 (24)

Thus, the natural frequency calculation of the functional gradient beam was transformed into the
problem of solving Eqs. (16) and (24) under boundary conditions Eq. (10).

2.3 Theory of Improved DQM
This study applies the improved differential quadrature method to calculate the free vibration

natural frequencies of functionally graded beams. The accuracy of the differential quadrature method
depends on the discrete node step size and the weight coefficient matrix A(r), which is influenced by
the distribution of nodes and the number of nodes. The normalized beam length interval [0,1] was
divided into N discrete elements, resulting in a total of N+1, discrete nodes, denoted by ξj(0 ≤ j ≤ N),
assuming ξ0 = 0, ξN = 1. The sudden change in the beam’s stiffness near the ends of the supports, or the
influence of the end boundary conditions, made the vicinity of the beam’s end the most sensitive region
for displacement and internal force changes. Therefore, arranging more fine-grained, non-uniform
nodes in the two end regions of the beam improved the calculation accuracy. This study adopts a
distribution of discrete nodes in a discrete form of geometric sequence nodes as described in Eq. (25),
i.e.,
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξi = a + b − a

2
Ä
qn/2

1 − 1
ä (

qi
1 − 1

)
,
Å

q1 ≥ 1.0, i = 0, 1, 2, · · · ,
n
2

ã
ξi = b − b − a

2
Ä
qn/2

2 − 1
ä (

qn−i
2 − 1

)
,
Ç

q2 = 1
q1

, i = n
2

,
n
2

+ 1, . . . , n
å (25)

The nodes are distributed from the end of the beam to the center in a series of equal ratios with
the common ratio q, which can control the numerical calculation accuracy and numerical dissipation
by adjusting the common ratio to modify the step size of the nodes for a certain number of discrete n.

The function ÙU (ξ), ıW (ξ) and Ûϕ (ξ) are described using the Lagrange interpolation function as
Eq. (26).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ÙU (ξ) = N∑
j=0

lj (ξ) ÙU (
ξj

)
ıW (ξ) = N∑

j=0
lj (ξ) ıW (

ξj

)

Ûϕ (ξ) = N∑
j=0

lj (ξ) Ûϕ (
ξj

)
(26)

where lj (ξ) is Lagrange polynomial, and it is stated as Eq. (27).

lj (ξ) =
N∏

k = 0
k �= j

ξ − ξk

ξj − ξk

(27)

From Eq. (26), the first derivative of the function ÙU (ξ), ıW (ξ) and Ûϕ (ξ) is obtained, the function
and its derivatives at each node were represented by a weighted linear sum of the values of discrete
N+1 node functions.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ÙU ′ (ξi) = N∑
j=0

l′
j (ξi) ÙU (

ξj

)
ıW ′ (ξi) = N∑

j=0
l′
j (ξi) ıW (

ξj

)
Ûϕ ′ (ξi) = N∑

j=0
l′
j (ξ) Ûϕ (

ξj

)
(28)

Eq. (28) is rewritten in vector form as follows:⎧⎪⎨
⎪⎩
ÙU ′ = A(1)

ij
ÙUıW ′ = A(1)

ij
ıWÛϕ ′ = A(1)

ij
Ûϕ (29)

where the weight coefficient matrix A(1)

ij is expressed as follows:

A(1)

ij = Ä
A(1)

ij

ä
(N+1)×(N+1)

(30)
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where A(1)

ij is expressed as Eq. (31).

A(1)

ij = l′
j (ξi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N∏
k = 0
k �= i, j

(ξi − ξk) /
N∏

k = 0
k �= i, j

(
ξj − ξk

)
(i �= j)

N∑
k = 0
k �= i

1
(ξi − ξk)

(i = j)
(31)

In Eq. (29), the column vectors ÙU ′
, ÙU , ıW ′

, ıW , Ûϕ ′ and Ûϕ are as follows:⎧⎪⎪⎨
⎪⎪⎩
ÙU ′ = ÄÙU ′ (ξ0) , ÙU ′ (ξ1) , · · · , ÙU ′ (ξN)

äT
, ÙU = ÄÙU (ξ0) , ÙU (ξ1) , · · · , ÙU (ξN)

äTıW ′ = ÄıW ′ (ξ0) , ıW ′ (ξ1) , · · · , ıW ′ (ξN)
äT

, ıW = ÄıW (ξ0) , ıW (ξ1) , · · · , ıW (ξN)
äTÛϕ ′ = (Ûϕ ′ (ξ0) , Ûϕ ′ (ξ1) , · · · , Ûϕ ′ (ξN)

)T
, Ûϕ = (Ûϕ (ξ0) , Ûϕ (ξ1) , · · · , Ûϕ (ξN)

)T

(32)

Similarly, from Eq. (29), it can be inferred that Eq. (33).⎧⎪⎨
⎪⎩
ÙU ′′ = A(2)

ij
ÙUıW ′′ = A(2)

ij
ıWÛϕ ′′ = A(2)

ij
Ûϕ (33)

The column vectors ÙU ′′
, ıW ′′

and Ûϕ ′′ are as follows:⎧⎪⎪⎨
⎪⎪⎩
ÙU ′′ = ÄÙU ′′ (ξ0) , ÙU ′′ (ξ1) , · · · , ÙU ′′ (ξN)

äTıW ′′ = ÄıW ′′ (ξ0) , ıW ′′ (ξ1) , · · · , ıW ′′ (ξN)
äTÛϕ ′′ = (Ûϕ ′′ (ξ0) , Ûϕ ′′ (ξ1) , · · · , Ûϕ ′′ (ξN)

)T

(34)

where the relationship between weight coefficient matrices A(2)

ij and A(1)

ij is Eq. (35).

A(2)

ij = A(1)

ij A(1)

ij (35)

The boundary conditions of beams were discussed by taking C-C beams as an example. Substi-
tuting Eqs. (29) and (33) into Eqs. (15c) and (15d), it can be obtained Eq. (36).

[I ]Il=0
ÙU = 0, [I ]Il=0

ıW = 0, [I ]Il=0 Ûϕ = 0 (36a)

[I ]Il=1
ÙU = 0, [I ]Il=1

ıW = 0, [I ]Il=1 Ûϕ = 0 (36b)

where Il is the elements of Il-th row with 0 and n, [· · · ]Il
is a matrix, I is the identity matrix of order

(n + 1) × (n + 1). Substituting Eqs. (29) and (33) into Eq. (16), the equation of motion of a FGMs
beam is obtained as Eq.(37).⎡
⎢⎣A(2)

ij −a1A
(1)

ij a1I
0 a4A

(1)

ij A(2)

ij − a4I
0 A(2)

ij −A(1)

ij

⎤
⎥⎦
ÖÙUıWÛϕ

è
− λ

⎡
⎣a2I 0 a3I

a5I 0 a6I
0 −α7I 0

⎤
⎦
ÖÙUıWÛϕ

è
=

Ñ
0
0
0

é
(37)

Simultaneous Eqs. (36) and (37) that was the Il-th row constant coefficient followed by replacing
the first row and last row of the corresponding matrix of Eq. (37). Thus, based on the above formula,
a general program was written in FORTRAN language to solve the natural frequency of the FGMs
beams along the thickness direction.
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3 Numerical Examples and Discussion
3.1 DQM

Functionally graded materials are composed of metal material aluminum and ceramic material
Al2O3, the material parameters of the FGMs in Eq. (1) are listed in Table 1.

Table 1: Two physical parameters of functionally graded materials

Type Elasticity modulus Density Poisson’s ratio

AL2O3 380 GPa 3800 kg/m3 0.23
AL 70 GPa 2700 kg/m3 0.23

Take the number of discrete units of beam length as N = 20, solving Eq. (24) by DQM. Tables 2–
5 show the dimensionless natural frequency Ω1 of FGMs beams with different boundary conditions,
and material gradient parameter p are calculated by DQM.

Table 2: Dimensionless natural frequencies Ω1 of FGMs beams with S-S boundary conditions

BC δ p

0 1 3 5 7 10 100 ∞

S-S

0.2 30.4461 16.7006 13.4529 12.6765 12.2492 11.8228 10.0676 9.71116
0.1 30.8164 16.8880 13.5973 12.8140 12.3839 11.9551 10.1885 9.82927
0.05 30.9111 16.9359 13.6342 12.8490 12.4183 11.9888 10.2194 9.85948
0.02 30.9377 16.9494 13.6445 12.8589 12.4279 11.9983 10.2281 9.86799
0.01 30.9416 16.9513 13.6460 12.8603 12.4293 11.9997 10.2294 9.86920
0.005 30.9425 16.9518 13.6464 12.8607 12.4297 12.0000 10.2297 9.86951
0.002 30.9428 16.9519 13.6465 12.8608 12.4298 12.0001 10.2298 9.86959
Ref. [23] 30.944 16.952 13.647 12.861 12.430 12.000 10.230 9.8696

Table 3: Dimensionless natural frequencies Ω1 of FGMs beams with C-S boundary conditions

BC δ p
0 1 3 5 7 10 100 ∞

C-S

0.2 47.4365 26.0256 20.9668 19.7563 19.0897 18.4243 15.6863 15.1304
0.1 48.1084 26.3659 21.2289 20.0058 19.3342 18.6645 15.9058 15.3448
0.05 48.2808 26.4530 21.2960 20.0697 19.3968 18.7260 15.9621 15.3997
0.02 48.3294 26.4776 21.3149 20.0876 19.4144 18.7433 15.9779 15.4152
0.01 48.3364 26.4811 21.3176 20.0902 19.4169 18.7458 15.9802 15.4175
0.005 48.3381 26.4819 21.3183 20.0909 19.4175 18.7464 15.9808 15.4180
0.002 48.3386 26.4822 21.3185 20.0910 19.4177 18.7466 15.9809 15.4182
Ref. [23] 48.341 26.483 21.319 20.091 19.418 18.747 15.981 15.418
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Table 4: Dimensionless natural frequencies Ω1 of FGMs beams with C-C boundary conditions

BC δ p

0 1 3 5 7 10 100 ∞

C-C

0.2 68.7474 37.7213 30.3907 28.6358 27.6691 26.7042 22.7337 21.9278
0.1 69.7874 38.2480 30.7965 29.0220 28.0476 27.0759 23.0734 22.2595
0.05 70.0545 38.3831 30.9004 29.1210 28.1446 27.1712 23.1607 22.3447
0.02 70.1299 38.4211 30.9297 29.1488 28.1719 27.1981 23.1853 22.3688
0.01 70.1407 38.4266 30.9339 29.1528 28.1758 27.2019 23.1888 22.3722
0.005 70.1434 38.4279 30.9349 29.1538 28.1768 27.2029 23.1897 22.3731
0.002 70.1441 38.4283 30.9352 29.1541 28.1771 27.2031 23.1899 22.3733
Ref. [23] 70.147 38.429 30.935 29.154 28.177 27.203 23.189 22.373

Table 5: Dimensionless natural frequencies Ω1 of FGMs beams with C-F boundary conditions

BC δ p
0 1 3 5 7 10 100 ∞

C-F

0.2 11.0391 6.04708 4.86768 4.58748 4.43382 4.28067 3.64951 3.52106
0.1 11.0272 6.04108 4.86306 4.58309 4.42951 4.27643 3.64563 3.51727
0.05 11.0242 6.03958 4.86191 4.58199 4.42844 4.27538 3.64467 3.51633
0.02 11.0234 6.03916 4.86159 4.58168 4.42814 4.27508 3.64440 3.51606
0.01 11.0233 6.03910 4.86154 4.58164 4.42810 4.27504 3.64436 3.51602
0.005 11.0233 6.03909 4.86153 4.58163 4.42809 4.27503 3.64435 3.51601
0.002 11.0232 6.03909 4.86153 4.58163 4.42808 4.27503 3.64434 3.51601
Ref. [23] 11.024 6.0392 4.8616 4.5816 4.4281 4.2750 3.6443 3.5160

Tables 2–5 demonstrate that the results are consistent with the solution presented in reference [23],
showing that as the height-span ratio h/L decreases, the section inertia of the beam has minimal impact
on the natural frequency of slender beams. However, this effect is not negligible for short, thick beams.

To verify the feasibility and accuracy of calculating the natural frequencies of FGMs beams using
DQM, assume p = 0, thereby simplifying an FGMs beam into a uniform ceramic beam. Tables 6–
8 display the first ten natural frequencies for C-C, S-S, and C-F beams when the height-span ratio
is h/L = 0.002 (with the number of discrete elements of the beam N = 20). As seen from Tables 6–8,
numerical results show excellent consistency with those reported in references [2,3] and exact solutions,
indicating that DQM is accurate for calculating the natural frequencies of beams made of isotropic
homogeneous materials. Here, the natural frequencies of beams in Tables 6–8 and the dimensionless
natural frequencies of beams in references [2,3] are defined as per Eq. (38).

Ω = 4

√
λ
φ1

φ3

= 4

 
ω2AL4ρm

EmI
4

√
φ1

φ3

(38)
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Table 6: Normalized natural frequencies determined for C-C beam with h/L = 0.002 and N = 20

h/L = 0.002

Frequencies Exact solution Ref. [2] Ref. [3] Present method

Ω1 4.73004 4.729979 4.72998 4.72997204
Ω2 7.85320 7.852959 7.85296 7.85305051
Ω3 10.9956 10.994991 10.9950 10.9956785
Ω4 14.1372 14.135925 14.1360 14.1385691
Ω5 17.2788 17.276580 17.2768 17.2840720
Ω6 20.4204 20.416854 20.4174 20.4344743
Ω7 23.5619 23.556687 23.5578 23.5931577
Ω8 26.7035 26.696015 26.6980 26.7647568
Ω9 29.8451 29.834775 29.8382 29.9553706
Ω10 32.9867 32.972905 32.9786 33.1727843

Table 7: Normalized natural frequencies determined for S-S beam with h/L = 0.002 and N = 20

h/L = 0.002

Frequencies Exact solution Ref. [2] Ref. [3] Present method

Ω1 3.14159 3.141327 3.14158 3.14158157
Ω2 6.28319 6.281059 6.28310 6.28313451
Ω3 9.42478 9.417609 9.42450 9.42481963
Ω4 12.5664 12.549414 12.5657 12.5671771
Ω5 15.7080 15.674921 15.7068 15.7113171
Ω6 18.8496 18.792632 18.8476 18.8591123
Ω7 21.9911 21.901049 21.9883 22.0133918
Ω8 25.1327 24.998815 25.1288 25.1781397
Ω9 28.2743 28.084502 28.2692 28.3586990
Ω10 31.4159 31.156826 31.4098 31.5619876

Table 8: Normalized natural frequencies determined for C-F beam with h/L = 0.002 and N = 20

h/L = 0.002
Frequencies Exact solution Ref. [2] Ref. [4] Present method

Ω1 1.8751 1.875103 1.87826 1.87510063
Ω2 4.6936 4.694043 4.70199 4.69404075
Ω3 7.8549 7.854556 7.86790 7.85466369
Ω4 10.9955 10.995009 11.0138 10.9957282
Ω5 14.1372 14.136069 14.1603 14.1387654
Ω6 17.2788 17.276791 17.3066 17.2843612

(Continued)
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Table 8 (continued)

h/L = 0.002
Frequencies Exact solution Ref. [2] Ref. [4] Present method

Ω7 20.4204 20.417150 20.4525 20.4348796
Ω8 23.5619 23.557080 23.5982 23.5936997
Ω9 26.7035 26.696519 26.7434 26.7654578
Ω10 29.8451 29.835404 29.8882 29.9562549

Assuming p = 0, Fig. 2 illustrates the curve of the first 15 natural frequencies of Timoshenko
beams with varying height-to-span ratios h/L. As observed in Fig. 2: (a–d), for smaller values of
h/L, i.e., h/L = 0.002 and 0.005, the relationship between non-dimensional frequency parameters and
frequency orders is almost linear. This relationship becomes nonlinear with the increase in height-to-
span ratios.

Figure 2: Non-dimensional frequency parameters Ω of the beam for different boundary conditions



CMES, 2024 15

Assuming p = 0.3, the first natural frequencies of FGMs beams were calculated using DQM.
The results, listed in Table 9, show excellent consistency with those reported in references [24,25],
proving that DQM is effective and accurate for calculating the natural frequencies of FGMs beams.
The natural frequencies of beams in Table 9 and the dimensionless natural frequencies of beams in
references [24,25] are defined as per Eq. (39).

� =
√

λ
φ1

12φ1

=
 

ω2AL4ρm

EmI

√
φ1

12φ1

(39)

Table 9: First natural frequencies Ω1 of FGMs beams with p = 0.3

Boundary condition Method of
calculation

h/L = 1/10 h/L = 1/30 h/L = 1/50 h/L = 1/100

S-S
Literature [24] 2.695 2.737 / 2.742
Literature [25] 2.701 2.738 / 2.742
DQM 2.702010 2.738123 2.741092 2.742348

C-F
Literature [24] 0.969 0.976 / 0.977
Literature [25] 0.970 0.976 / 0.977
DQM 0.9701438 0.9763097 0.9768091 0.9770201

C-C
Literature [24] 5.811 6.167 / 6.212
Literature [25] 5.875 6.177 / 6.214
DQM 5.869043 6.175456 6.202253 6.213671

Note: The “/” in Table 9 indicated that the calculated values were not given in the literature [24,25].

Based on first-order shear deformation theory, the governing Eq. (37) of a FGMs Timoshenko
beam was calculated by DQM. The first natural frequency curve of the beam under different boundary
conditions with material parameter p was obtained as shown in Figs. 3–5 (0.0001 ≤ p ≤ 10000).

Figure 3: Relationships between the first natural frequencies Ω1 and material parameter p for FGMs
beams with boundary condition C-C
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Figure 4: Relationships between the first natural frequencies Ω1 and material parameter p for FGMs
beams with boundary condition S-S

Figure 5: Relationships between the first natural frequencies Ω1 and material parameter p for FGMs
beams with boundary condition C-F

The variation in the gradient parameter primarily corresponds to alterations in physical properties
such as material stiffness and density, which directly impact the frequency characteristics of its
compositional structure. The gradient parameter ranged from 0.1 to 10, and the stiffness and density
of the FGMs beams exhibited significant variations. Therefore, any changes in the gradient parameter
substantially impact the first-order natural frequency of the FGMs beams.

The calculation results showed that the Timoshenko beams approached the Euler-Bernoulli beams
[26] with a decrease in the height-to-span ratios; the first natural frequencies of the beams increased
gradually. For smaller values of h/L, i.e., h/L = 0.002 and 0.005, the first natural frequencies of the
Timoshenko beams calculated by DQM were very close to the results in the reference. When p = 0.0001,
it was very close to the first natural frequencies of the Euler-Bernoulli beams made of pure ceramic
uniform materials. However, when p = 10000, it was very close to the beams made of pure metal
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uniform materials. These calculation results proved that DQM was effective and accurate in calculating
the natural frequencies of FGMs beams along the thickness direction. The natural frequencies of
beams in Figs. 3–5 and the dimensionless natural frequencies of beams were defined as Eq. (40).

Ω = √
λ =

 
ρmAL4ω2

EmI
(40)

The improved DQM in this article can also provide the vibration mode functions corresponding to
all frequencies simultaneously. When the height-to-span ratio h/L = 0.002 and the gradient parameter
p = 2, the first three mode functions of the FGMs beam under the C-C, S-S, and C-F boundary
conditions are shown in Figs. 6–8.

Figure 6: First three orders of modal functions of the beam under C-C boundary condition

Figure 7: First three orders of modal functions of the beam under C-F boundary condition
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Figure 8: First three orders of modal functions of the beam under S-S boundary condition

3.2 EFM
We also used the finite element method (FEM) based on the ABAQUS software to solve the free

vibration of the FGMs Timoshenko beams. Based on the geometric parameters used in the DQM, the
length, width, and height of the model of the rectangular cross-sectional beam were 4000 × 200 ×
200 mm. Due to the nonlinear characteristics of the beam material, a 3D entity model for the FGMs
Timoshenko beam was established by the Matlab program, which was written to define the unit
material properties that vary with coordinates. Then, various boundary conditions for frequency
analysis and other processes were defined. The eigenfrequency in the ABAQUS software was employed
to calculate the first-order frequencies of the FGMs beam. Fig. 9 shows the FEM results of the first
natural frequency of an FGMs C-C beam. In the simulation procedure, the material properties are
shown in Table 1. The calculated results are listed in Tables 10–12.

Figure 9: (Continued)
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Figure 9: First natural frequency of the FGMs Timoshenko beams with different boundary conditions
by the FEM

Table 10: First natural frequencies Ω1 of functionally graded C-S beam by a different method

BC δ p

0 1 3 5 7 10 100 ∞

C-S

0.2 DQM 47.436 26.025 20.966 19.756 19.089 18.424 15.686 15.130
EFM 44.564 22.357 17.589 16.895 16.785 15.678 12.357 12.782

0.05 DQM 48.280 26.453 21.296 20.069 19.396 18.726 15.962 15.399
EFM 47.649 27.107 21.784 19.687 19.756 18.897 15.664 15.185

0.01 DQM 48.336 26.481 21.317 20.090 19.416 18.745 15.980 15.417
EFM 47.895 27.012 20.998 19.247 19.689 19.021 16.124 15.689

Ref. [23] 48.341 26.483 21.319 20.091 19.418 18.747 15.981 15.418

Table 11: First natural frequencies Ω1 of functionally graded C-C beam by a different method

BC δ p

0 1 3 5 7 10 100 ∞

C-C

0.2 DQM 68.747 37.721 30.390 28.635 27.669 26.704 22.733 21.927
EFM 60.214 32.688 21.578 20.687 20.314 19.354 15.247 14.254

0.05 DQM 70.054 38.383 30.900 29.121 28.144 27.171 23.160 22.344
EFM 69.855 38.926 31.245 28.954 27.896 27.224 23.478 21.966

0.01 DQM 70.140 38.426 30.93 29.152 28.175 27.201 23.188 22.372
EFM 69.856 37.754 29.654 28.754 27.689 26.414 22.879 21.874

Ref. [23] 70.147 38.429 30.935 29.154 28.177 27.203 23.189 22.373
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Table 12: First natural frequencies Ω1 of functionally graded C-F beam by a different method

BC δ p

0 1 3 5 7 10 100 ∞

C-F

0.2 DQM 11.039 6.047 4.867 4.587 4.433 4.280 3.649 3.521
EFM 10.956 6.045 4.124 4.321 4.214 4.214 3.552 3.245

0.05 DQM 11.024 6.039 4.861 4.581 4.428 4.275 3.644 3.516
EFM 10.939 6.362 4.578 4.321 4.326 4.356 3.558 3.483

0.01 DQM 11.023 6.039 4.861 4.581 4.428 4.275 3.644 3.516
EFM 10.956 5.978 4.687 4.547 4.478 4.124 3.541 3.412

Ref. [23] 11.024 6.039 4.861 4.581 4.428 4.275 3.644 3.516

Tables 10–12 show that the first natural frequency has errors or even distortions with EFM when
the boundary conditions are fixed support and simple support with a length-to-height ratio of 0.2.
However, under other length-to-height ratios and boundary conditions, the results of EFM are closer
to those of DQM and literature results, especially when the length-to-height ratio is relatively large,
showing excellent consistency with the results in the literature [23] and those of DQM. This further
indicates that the applicability of the Differential Quadrature Method for calculating the natural
frequencies of FGMs beams is better than that of the Finite Element Method for short, thick beams.

4 Conclusion

This study investigates the dynamic natural characteristics of FGMs Timoshenko beams using
the improved Differential Quadrature Method. Firstly, based on the first-order shear deformation
theory, the governing equation of transverse free vibration of an FGMs beam is transformed into
the eigenvalue problem of ordinary differential equations. Finally, the QR method can calculate the
first several natural frequencies of transverse free vibration of an FGMs beam. In conjunction with the
results reported in related literature, the Finite Element Method was introduced to verify the feasibility
and accuracy of the developed Differential Quadrature Method. The main conclusions are as follows:

(1) The natural frequencies of the FGMs Timoshenko beams were calculated using improved
DQM and EFM. The numerical results showed excellent consistency with those obtained in
the reference. The applicability and high efficiency of the proposed method for calculating the
natural frequencies of FGMs Timoshenko beams were proved.

(2) The shear deformation and rotational inertia of the FGMs beams’ cross-section influence
the natural frequency. For smaller values of h/L, i.e., h/L = 0.002 and 0.005, the relations
between the non-dimensional frequency parameter and frequency order were almost linear.
The relations became nonlinear with the increase of height-to-span ratios, and the first natural
frequency of the beam increases with a decreasing height-span ratio.

(3) The effects of shear deformation and rotational inertia on the natural frequencies of the FGMs
beams cannot be neglected when the beams have relatively large height-span ratios (such as
h/L = 0.2 and h/L = 0.1).
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