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ABSTRACT

In this paper, a generalized nth-order perturbation method based on the isogeometric boundary element method
is proposed for the uncertainty analysis of broadband structural acoustic scattering problems. The Burton-Miller
method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic
field, and the nth-order discretization formulation of the boundary integral equation is derived. In addition,
the computation of loop subdivision surfaces and the subdivision rules are introduced. In order to confirm the
effectiveness of the algorithm, the computed results are contrasted and analyzed with the results under Monte
Carlo simulations (MCs) through several numerical examples.
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1 Introduction

In many engineering problems [1–5], there is an increasing focus on the consideration of uncer-
tainty. The problem of uncertainty in stochastic data occurs frequently in engineering practice,
especially when some parameters are derived from field measurements or laboratories, and the
modeled engineering system’s final stochastic response is influenced by the statistical estimates of
these parameters. To ascertain how input probabilistic properties affect an engineering system’s final
stochastic response, several uncertainty analysis techniques have been proposed, such as stochastic
spectral methods [6,7], Monte Carlo simulations (MCs) [8–11], and perturbation techniques [12–
16]. Among all the stochastic approaches, MCs is the most straightforward and comprehensive
probabilistic technique and is widely employed across diverse academic fields [17]. Although MCs
is computationally expensive, it remains the most reliable and stable simulation technique compared
to other probabilistic methods, which is often used as a reference solution [18,19]. The generalized
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nth-order perturbation method’s primary goal is to remove the restriction on the input second prob-
ability moments to be less than 0.15. The generalized nth-order perturbation method realizes Taylor
expansions of arbitrary order by utilizing the parameters of perturbation and the computed partial
derivatives of the increasing order around their expectation [20,21]. In computational mechanics,
evaluating the accuracy of dependable issues has long been an unsolved issue, Kamiński [22] has
obtained satisfactory accuracy by applying the nth-order perturbation technique with exact problems.
Moreover, the perturbation technique is widely used in finite element method (FEM), boundary
element method (BEM), and finite difference method (FDM) [23–26].

Hughes et al. [27] proposed isogeometric analysis (IGA), which is a novel spline theory-based
numerical computation technique. IGA makes acoustic boundary element simulation calculations
more convenient, accurate, and high precision. The method can directly analyze the CAD model
without additional meshing, which reduces the discretization error of the model and also speeds up
the calculation [28–30]. It uses non-uniform rational b-splines (NURBS) [31–33] and t-splines [34,35]
instead of conventional finite elements. Without altering the geometry, we can increase the simulation’s
accuracy by applying h- and refinements. To facilitate more versatile geometric representations in
design, IGA has integrated t-splines, which feature t-joints and enable local refinement into the analysis
[36–38]. Surface subdivision is a potent surface design technique, with a straightforward refinement
procedure, which can effectively produce smooth surfaces from any original mesh. Catmull et al. [39]
first proposed a mode of subdivision surfaces in 1978, which is a quadrilateral split to generate a cubic
B-spline surface, and Loop [40] first proposed a basic triangle-based subdivision mode in 1987, which
did a generalization of the box spline. Subdivided surfaces are compatible with NURBS as a standard
for CAD systems and enable refinement of B-spline methods. Subdivision techniques are now widely
used in modeling applications [41–45].

The boundary element method is extremely attractive when waves propagate in an infinite domain
[46–50]. BEM is an important numerical method in acoustics [51–54], and is also widely used in
other scientific and engineering fields. It is popular in the analysis of external acoustic fields due
to its advantages, such as reduced dimensional computation and high analytical accuracy, and the
boundary element method requires only a discrete boundary and, at the same time completely satisfies
the radiation conditions at the infinity. Combined with the well-known Burton-Miller method [55,56],
the capability of acoustic boundary elements is further improved and the problem of non-uniqueness
of solutions is avoided successfully when using BEM to analyze the external sound field problem.
However, the conventional BEM cannot be used in large-scale problems because the coefficient
matrices formed are dense matrices with high memory requirements. Fortunately, the boundary
element coefficient matrix, although dense, has the property of chunked low rank, and a series of
fast methods using low-rank decompositions have been proposed, including fast multipole method
[57,58], adaptive cross approximation [59,60], and other fast methods [61,62], which have successfully
reduced computation and memory usage, and made it possible for boundary element method to serve
complex engineering problems.

In recent years, more scholars have investigated the application of isogeometric boundary elements
in some practical acoustic engineering problems. Venås et al. [63] investigated the approximation of
isogeometric boundary elements for the 3D acoustic scattering problem and built a BeTSSi submarine
model by combining parametric surfaces with NURBS. Chen et al. [64] simulated acoustic wave
propagation in a semi-infinite space by combining the Catmull-Clark subdivision surface method in
3D computer graphics with isogeometric boundary elements. Wu et al. [65] developed an isogeometric
indirect boundary element based on NURBS to analyze 3D acoustic problems and combined
polynomials splines over hierarchical T-meshes with indirect boundary element for the first time.



CMES, 2024 3

The isogeometric boundary element method (IGABEM) has also been widely used in the analysis
of problems in potential [66–70], elastodynamics [71–75] and acoustic structural optimization [76–
79]. A very important index of the acoustic boundary element is that it has frequency dependence,
the response of the whole system is frequency-dependent, and in the real environment, the excitation
load is broad frequency, not single frequency. Therefore, in this paper, we consider the stochastic
analysis of the acoustic boundary element with the frequency change and use the generalized nth-order
perturbation method based on the isogeometric boundary element method for uncertainty analysis.

The rest of the paper is structured as follows. Section 2 introduces the theoretical aspects of the
generalized nth-order perturbation method. Section 3 presents the subdivision rules and computation
of loop subdivision surfaces and proposes IGABEM for the propagation of sound waves in an infinite
domain. Section 4 compares the computational results of the proposed algorithm with those under
MCs through two numerical examples to confirm the accuracy and effectiveness of the proposed
algorithm. Finally, in Section 5, we summarize the conclusions of this work and look forward to
future work.

2 Theoretical Aspects of the Generalized nth-Order Perturbation Method

In a general stochasticity analysis, a group of random fields m(x) associated with space coor-
dinates and their probability density functions (PDF) ρ(m) are introduced, the first two probability
moments of this random field can be described as

E (m (x)) =
∫ +∞

−∞
m (x)ρ (m) dm, (1)

and,

Cov(m(xr), m(xs)) =
∫ +∞

−∞

∫ +∞

−∞
(m (xr) − m0 (xr))(m (xs) − m0 (xs))ρ (m) dm, (2)

where m0(xr) and m0(xs) denote the first probability moments of the different variables, respectively.
And Cov(m(xr), m(xs)) denotes the covariance between m0(xr) and m0(xs).

The stochastic perturbation method’s fundamental concept is to use the small parameter ε to
extend all of the state functions and input variables of a given problem across its spatially expected
Taylor series. For a single random variable, this state function f (m) can be expressed as

f (m) = f (0) (m) +
∞∑

n=1

1
n!

εnf (n) (m)[�m]n ∼= f (0) (m) + εf (1) (m) �m + · · · + 1
n!

εnf (n) (m) [�m]n, (3)

where f (n) (m) is the nth partial derivative of f (m) concerns an individual random variable m, which is
expressed in this way:

f (n) (m) = ∂nf (m)

∂mn
. (4)

Next, replace m in Eq. (1) with f (m) in Eq. (3), the expectation value of the state function f (m)

can be acquired by combining the Taylor series expansion:

E (f (m) , m) =
∫ +∞

−∞
f (m)ρ (m) dm =

∫ +∞

−∞

[
f (0)(m) +

∞∑
n=1

1
n!

εnf (n) (m)[�m]n

]
ρ (m) dm. (5)
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The perturbation parameter ε influences the Taylor series expansion’s convergence. This power
expansion is only applicable if the series converges and the state function is analytic in ε. Consequently,
any criterion for convergence should take the perturbation parameter’s size into account. In many
calculations, the perturbation parameter ε is set to 1. However, in this work, it is treated as a parametric
variable for uncertainty analysis.

Considering the various probability distributions, one can note the essential difference between the
symmetric and asymmetric distribution functions, where the symmetric distribution function ignores
the odd-order terms in the Taylor expansion, and Eq. (5) can be written as

E (f (m) , m) = f (0)(m) +
∫ +∞

−∞

[
2A∑

n=1

1
[2n]!

ε2nf (2n) (m)[�m]2n

]
ρ (m) dm. (6)

The asymmetric probability density function can be described as

E (f (m) , m) = f (0)(m) +
∫ +∞

−∞

[
N∑

n=1

1
[n]!

εnf (n) (m)[�m]n

]
ρ (m) dm. (7)

In both situations, the quantities of natural numbers A and N must ensure that the additional
probability moments have a satisfactory approximation accuracy. The following statistical error
measures for variance and expectation can be introduced. For the expectations:∣∣∣E (

fN1
(m)

) − E
(

f̄ (m)
)∣∣∣ ≤ ε1. (8)

For the variance:∣∣∣V (
fN2

(m)
) − V

(
f̄ (m)

)∣∣∣ ≤ ε2. (9)

The positive numbers ε1 and ε2 denote the permissible error in determining the expectation and
variance, and the natural numbers N1 and N2 denote the order of the perturbation, the larger the

value, the more the condition of satisfactory accuracy is fulfilled. E
[
f̄ (m)

]
denotes the expected value

obtained from Monte Carlo simulations. The precise answers to the two aforementioned equations
can be found in statistical approximations [80], such as

E
(

f̄ (m)
)

= lim
A→∞

1
A

A∑
i=1

f̄i(m), (10)

together with

V
(

f̄ (m)
)

= lim
A→∞

1
A − 1

A∑
i=1

[
f̄i(m) − E

(
f̄ (m)

)2
]

, (11)

where A is a very large number denoting the total number of randomized trials used to compute the
estimate of the random function f (m).

Assuming that the PDF is a symmetric distribution function, the state function f (m) can be
extended to second-order deviation to its mean, denoted as



CMES, 2024 5

E (f (m) , m) =
∫ +∞

−∞
f (m)ρ (m) dm

∼=
∫ +∞

−∞

[
f (0)(m) + εf (1) (m) �m + 1

2
ε2f (2) (m) (�m)2

]
ρ (m) dm

= f (0)(m) + 1
2
ε2f (2) (m) μ2(m), (12)

where μ2(m) denotes the PDF and the associated second-order central probability distance.

If greater accuracy is employed, higher-order expansion terms are required, and the expansion for
an eighth-order perturbation can be described as

E (f (m) , m) = f (0)(m) + 1
2
ε2f (2)(m)μ2(b) + 1

4!
ε4f (4)(m)μ4(m) + 1

6!
ε6f (6)(m)μ6(m) + 1

8!
ε8f (8)(m)μ8(m),

(13)

where μb(m) indicates the moments of variable m up to order bth in probability. The state function
f (m) variance is expressed as

V (f (m)) =
∫ +∞

−∞
[f (m) − E (f (m))]2

ρ (m) dm. (14)

The sixth-order expression for the variance of the state function f (m) is as follows, based on similar
considerations:

V (f (m)) ∼= ε2
[
f (1)(m)

]2
μ2(m) +

[
1
4

[
f (2)(m)

]2 + 2
3!

[
f (1)(m)

] [
f (3)(m)

)]
ε4μ4(m)

+
[[

1
3!

]2 [
f (3)(m)

]2 + 1
4!

[
f (2)(m)

] [
f (4)

] + 2
5!

[
f (1)(m)

] [
f (5)(m)

]]
ε6μ6(m). (15)

In this paper, we also consider the nth-order central probability moments of the widely used
Gaussian distribution, denoted as

μ2n+1(m) = 0, μ2n(m) = 1 × 3 × 5 × · · · × [2n − 1]σ 2n(m). (16)

The method can also be applied to approximate formulas for expectation and variance with
multiple variables. The nth-order derivative values of the response’s variance and expectation as
determined by Eqs. (5) and (14).

3 Isogeometric Boundary Element Method with Loop Subdivision Surface for 3D Problems

For frequency-domain acoustic problems, the system response has a certain frequency depen-
dence. In the real environment, the excitation load is a broadband excitation, which is a range
rather than a definite value. Therefore, in this paper, the nth-order perturbation method based on
isogeometric boundary elements is used to analyze the wideband structural acoustics with uncertainty.

3.1 Loop Subdivision Surface
Subdivided surfaces are based on an initial control mesh and certain subdivision rules, and can be

constructed from an initial control mesh of any topology. This avoids the geometric errors introduced
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by the traditional parametric surface modeling of cutting and splicing when constructing complex
free-surface models, and subdivided surfaces are favored because of their greater flexibility. The loop
subdivision provides more smooth and continuous surfaces with good adaptability to complex shapes,
while the meshfree approach [81,82] applies to arbitrary shapes and topologies, and can handle a
variety of complex geometries and irregular meshes, the combination of which enables better handling
of complex geometries and improves the accuracy of the computational results. We plan to further
explore this approach in the future.

3.1.1 Loop Subdivision Rules

For the initial control mesh, some subdivision rules are used to insert new vertices into the mesh,
and then a new mesh is obtained by connecting the new vertices to the old vertices according to some
topological rules. The subdivision rules are applied repeatedly, and in the limit, the mesh eventually
converges to a smooth surface. In practice, the mesh is subdivided to the extent that the surface is
considered smooth and is no longer subdivided. While the Loop subdivision [40] is an approximate
subdivision method, it is the first proposed subdivision method based on the triangle mesh, which
is a generalization of the box spline. By inserting new vertices on the edges of the triangle mesh and
connecting them two by two, the triangle can be divided into four smaller triangles, and with each
subdivision, the number of triangles will be increased to a fourth of the initial amount.

The amount of edges that are directly related to a vertex is known as its valence. Vertices are
further categorized into regular vertex and extraordinary vertex. In triangular mesh, regular points
are internal vertices with a valence of 6 or boundary points with a valence of 4. Other points are
extraordinary points. In a quadrilateral mesh, a regular point is an interior vertex of value 4 or a
boundary point of value 3, and the other points are extraordinary. The Loop subdivision algorithm
is categorized into geometric and topological rules. The geometric rule is to add a new vertex E point
on each edge and generate V points from the original vertices as shown in Fig. 1a. The topology rule
connects the new vertices and edges obtained from each subdivision to obtain a new topology and
control mesh, as illustrated in Fig. 1b. The geometric rules for Loop subdivision to calculate new
vertices are as follows:

pE = 1
8
(p2 + p3) + 3

8
(p0 + p1), (17)

pV = (1 − nβn)p′ + βn

n−1∑
i=0

pi, (18)

where p′ is the old vertex corresponding to pV and n is the valence of the neighborhood of vertex p′.
And,

βn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3
16

n = 3

1
n

[
5
8

−
(

3
8

+ 1
4

cos
2π

n

)2
]

n > 3.

(19)

From Eq. (18), the point V can be obtained by weighted summation of the original vertex and the
vertices in its neighborhood.
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Figure 1: (a) Loop subdivision surface calculation template; (b) Loop subdivision topology rules

3.1.2 Calculation of Loop Subdivision Surfaces

A triangular patch is a regular cell if its three control points have valence 6 and none of its two-ring
neighborhood vertices are border vertices. A quadratic box spline with 12 basis functions Ni and 12
control vertices xi can be precisely represented by

x(β1, β2) =
12∑

i=1

Ni(β1, β2)xi, (20)

where (β1, β2) is the coordinate of the center of gravity of the unit triangle.

A triangular patch that has at least one control point with the valence is 6, or one of its bicyclic
neighborhood vertices is a border vertex, otherwise, it is an irregular cell, and a quadratic box spline
cannot represent the resulting surface patch. Three regular sub-patches and one irregular sub-patch
are created for every subdivision of an irregular patch. The limit surfaces produced by the Loop
subdivision method can be C2-continuous at regular elements and C1-continuous at singular elements.
For evaluating irregular patches, we need to repetitively subdivide their irregular sub-patch grids until
the appropriate parameter values are contained within regular patches.

3.2 IGABEM for Acoustic Problems
The Kirchhoff-Helmholtz conventional boundary integral equation (CBIE) can be written as

C(x)ψ(x) +
∫

	

∂G(x, y)

∂n(y)
ψ(y)d	(y) =

∫
	

G(x, y)q(y)d	(y) + ψ inc(x), (21)
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where point x is called the field point and point y is called the source point. The geometric features
at the point x determine the coefficient C(x). If point x is smooth, C(x) = 1/2. ψ inc denotes incident

sound pressure and q(y) = ∂ψ(y)

∂n(y)
denotes sound flux.

Consider that Eq. (21) will have spurious frequencies when solving the external sound field
problem, thus leading to a non-unique solution. We use the Burton-Miller method to resolve the
unique solution of the exterior acoustic problem, and the new boundary integral equation is obtained
by taking a partial derivation of the conventional boundary integral equation concerning the direction
of the exterior normal of the source point, described as follows:

C(x)q(x) +
∫

	

[
∂2G(x, y)

∂n(y)n(x)
ψ(y) − ∂G(x, y)

∂n(x)
q(y)

]
d	(y) = ∂ψ inc(x)

∂n(x)
, (22)

Because of the presence of super-singular integrals in Eq. (22), the equation is known as the Hyper-
singular boundary integral equation. The existence of singular integrals makes it difficult to obtain an
exact solution to the above equations when we solve them directly by Gaussian integration. These
singular integrals require special treatment, and the singular phase elimination technique is usually
accustomed to solving the singular integrals exactly [83].

The kernel function of each order for the 3D acoustic problem is:

G(x, y) = eikr

4πr
,

∂G(x, y)

∂n(y)
= F(x, y) = − eikr

4πr2
(1 − ikr)

∂r
∂n(y)

,

∂G(x, y)

∂n(x)
= K(x, y) = − eikr

4πr2
(1 − ikr)

∂r
∂n(x)

,

∂2G(x, y)

∂n(y)n(x)
= H(x, y) = eikr

4πr3

[
(3 − 3ikr − k2r2)

∂r
∂n(y)

∂r
∂n(x)

+ (1 − ikr)ni(x)ni(y)

]
, (23)

where r = |x − y| is the Euclidean distance between the field and source points, k is the wave number
and i denotes the imaginary part.

Combining Eqs. (21) and (22), the Burton-Miller formula can be as follows:

(ψ(x) + αq(x)) C(x) +
∫

	

[F(x, y)∂n(y)ψ(y) − G(x, y)q(y)] d	(y)+

α

∫
	

[H(x, y)ψ(y) − K(x, y)q(y)] d	(y) = ψ̃ inc(x), (24)

where

ψ̃ inc(x) = ψ inc(x) + α
ψ inc(x)

∂n(x)
, (25)

where α is the coupling coefficient, α = i/k when the wave number k > 1; when k ≤ 1, α = i.

In order to overcome the problem of low computational accuracy in the calculation of the
traditional approximate geometric model of the Lagrangian function with physical field interpolation,
in this research, the geometric model is built by using the loop subdivision surface, and the boundaries
in the discretization Eq. (24) are formed into some elements as described below:
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	 =
Nel∑
e=1

	e. (26)

where Nel is the total number of elements and e is the element index.

In fact, by fitting all levels of subdivision meshes, we can obtain the same surface model, which
is consistent with the limits of the subdivision surface. Consequently, we do not need to perform the
numerical computation of the limit subdivision mesh level in the numerical computational analysis;
instead, we only need to select the suitable level of subdivision meshes. The field points have local
coordinates x(β1, β2) within the reference element, and the sound pressure and its normal derivative
are discretized using the subdivided basis functions Bκ(β1, β2):

ψ
(0)

(x(β1, β2)) =
nf∑

κ=1

Bκ(β1, β2)ψ
(0)

κ
, q(0) (x(β1, β2)) =

nf∑
κ=1

Bκ(β1, β2)q(0)

κ
, (27)

where ψ
(0)

κ
and q(0)

κ
denote the characteristics of acoustic pressure’s derivative and flux related to the

κth coordinate points in the subdivision patch, respectively; nf is the number of collocation points.

By substituting Eq. (27) into Eq. (24), the nth-order derivative discretization equation for isogeo-
metric boundary elements can be derived as follows:

C
(

x(β̂1, β̂2)
) nf∑

κ=0

Bκ(β̂1, β̂2)
(
ψ

(0)

κ
+ αq(0)

κ

) = ψ̃
(0)

inc

(
x(β̂1, β̂2)

)
+

Ne∑
e=1

nf∑
κ=0

∫
	e

G(0)Bκ(β1, β2)d	(y)q(0)

κ
−

Ne∑
e=1

nf∑
κ=0

∫
	e

F (0)

(
x(β̂1, β̂2), y(β1, β2)

)
Bκ(β1, β2)d	(y)ψ

(0)

κ
+

α

Ne∑
e=1

nf∑
κ=0

∫
	e

K (0)

(
x(β̂1, β̂2), y(β1, β2)

)
Bκ(β1, β2)d	(y)q(0)

κ
−

α

Ne∑
e=1

nf∑
κ=0

∫
	e

H (0)

(
x(β̂1, β̂2), y(β1, β2)

)
Bκ(β1, β2)d	(y)ψ

(0)

κ
, (28)

where κ = 0, 1, . . . , nf , Ne is the amount of NURBS elements.

In order to create a system of equations using the boundary element approach, the same amount of
boundary integral equations must be created as the amount of control points. By the resolution of this
system of equations, we can derive unknown nodal solutions. Here, we use a configuration scheme
to produce a system of equations. Given an element 	e, through its patch, we define the set Ce ∈
[xe(0, 0), xe(1, 0), xe(0, 1)] of configuration points in this element, then the global set of configuration
points is denoted as

C =
Nel∑
e=1

Ce. (29)

The amount of configuration points is the same as the number of vertices, but the control
vertices and configuration points do not overlap. Then, interpolation operations are performed in the
elements of the corresponding regular patches or irregular parameters to acquire the coordinates of the
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configuration points. Finally, the equations of all configuration points are collected and represented
in matrix form, the system of linear algebraic equations that follows:

F̄
(0)

ψ
(0) = Ḡ

(0)

q(0) + ψ̃
(0)

inc. (30)

Then, the field vector ψ
(0) can be obtained by Eq. (30).

3.3 Generalized nth-Order Perturbation
In this paper, the wave number k is set as a random input variable, and all state functions and

variables associated with this random input variable k are extended using a Taylor series expansion
about the point k0 and as the expectation of k. Then these state functions using the �k = k − k0

expansion can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(k) = p(k0) + εp(1)(k0)�k + 1
2
ε2p(2)(k0)[�k]2 + · · · + 1

n!
εnp(n)(k0)[�k]n,

G (k) = G (k0) + εG(1)(k0)�k + 1
2
ε2G(2)(k0)[�k]2 + · · · + 1

n!
εnG(n)(k0)[�k]n,

F (k) = F (k0) + εF (1)(k0)�k + 1
2
ε2F (2)(k0)[�k]2 + · · · + 1

n!
εnF (n)(k0)[�k]n,

K (k) = K (k0) + εK (1)(k0)�k + 1
2
ε2K (2)(k0)[�k]2 + · · · + 1

n!
εnK (n)(k0)[�k]n,

H (k) = H (k0) + εH (1)(k0)�k + 1
2
ε2H (2)(k0)[�k]2 + · · · + 1

n!
εnH (n)(k0)[�k]n.

(31)

Then, the different order expansions of the boundary integral equation of Eq. (24) are denoted as

• The zeroth-order equation is given by

(ψ(x; k0) + αq(x; k0)) C(x) =
∫

	

[G(x, y; k0)q(y; k0) − F(x, y; k0)ψ(y; k0)] d	(y)+

α

∫
	

[K(x, y; k0)q(y; k0) − H(x, y; k0)ψ(y; k0)] d	(y) + ψ̃ inc(x; k0), (32)

• The nth-order equation is defined by

C(x)
[
ψ

(n)
(x; k0) + αq(n)(x; k0)

] = ψ̃
(n)

inc (x; k0)+
n∑

t=0

(
n
t

) ∫
	

[
G(t)(x, y; k0)q(n−t)(y; k0) − F (t)(x, y; k0)ψ

(n−t)
(y; k0)

]
d	(y)+

α

n∑
t=0

(
n
t

)∫
	

[
K (t) (x, y; k0) q(n−t)(y; k0) − H (t) (x, y; k0)ψ

(n−t)
(y; k0)

]
d	(y). (33)

In order to obtain a direct expression for the derivative of the kernel function at tth-order in
Eq. (24), it is necessary to analyze the derivative of the Hankel function. Then the derivative of the
kernel function at tth-order in Eq. (24) is denoted as
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G(t)(x, y; k0) = (ir)teik0r

4πr
,

F (t)(x, y) = it

4π

[
(t − 1)rt−2 + ik0rt−1

]
eik0r ∂r

∂n(y)
,

K (t)(x, y) = it

4π

[
(t − 1)rt−2 + ik0rt−1

]
eik0r ∂r

∂n(x)
,

H (t)(x, y) = ijrt−3eikr

4π

{[
(t − 1)(t − 3) + (2t − 3)ikr − k2r2

] ∂r
∂n(y)

∂r
∂n(x)

− [(t − 1) + ikr] ni(x)ni(y)

}
.

(34)

3.3.1 Discrete Boundary Integral Equations

The sound pressure and sound pressure flux at the boundary of Eq. (24) are interpolated using
the subdivision surface basis functions in the following way, applying the idea of IGA.

ψ
(n)

(x(β1, β2); k0) =
nf∑

κ=1

Bκ(β1, β2)ψ
(n)

κ
(k0), q(n) (x(β1, β2); k0) =

nf∑
κ=1

Bκ(β1, β2)q(n)

κ
(k0), (35)

where ψ
(n)

κ
(k0) and q(n)

κ
(k0) represent derived factors of the acoustic pressure and flux connected to the

κth regulatory point in the patch of a subdivision element, respectively; nf is the number of collocation
points.

Substituting Eq. (35) into Eq. (33), the nth-order derivative discretization formula for the bound-
ary integral equation can be described as

C
(

x(β̂1, β̂2)
) nf∑

κ=0

Bκ(β̂1, β̂2)
(
ψ

(n)

κ
+ αq(n)

κ

) =
n∑

t=0

(
n
t

) Ne∑
e=1

nf∑
κ=0

∫
	e

G(t)Bκ(β1, β2)d	(y)q(n−t)
κ

−

n∑
t=0

(
n
t

) Ne∑
e=1

nf∑
κ=0

∫
	e

F (t)
(

x(β̂1, β̂2), y(β1, β2); k0

)
Bκ(β1, β2)d	(y)ψ

(n−t)
κ

(k0)+ (36)

α

n∑
t=0

(
n
t

) Ne∑
e=1

nf∑
κ=0

∫
	e

K (t)
(

x(β̂1, β̂2), y(β1, β2); k0

)
Bκ(β1, β2)d	(y)q(n−t)

κ
(k0)−

α

n∑
t=0

(
n
t

) Ne∑
e=1

nf∑
κ=0

∫
	e

H (j)
(

x(β̂1, β̂2), y(β1, β2); k0

)
Bκ(β1, β2)d	(y)p(n−j)

κ
(k0) + ψ̃

(n)

inc

(
x(β̂1, β̂2); k0

)
,

where κ = 0, 1, . . . , nf ; Ne is the number of NURBS elements.

Due to the presence of control points, the construction of the system of equations using the bound-
ary element method requires the construction of boundary integral equations equal to the number of
control points, and then by resolving this system of equations, the results of the unestablished nodes
can be obtained. In this background, this paper constructs a set of configuration points, given an
element 	e, we define a set Ce ∈ [xe(0, 0), xe(1, 0), xe(0, 1)] of configuration points in this element, then
the global set of configuration points can be represented as
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C =
Nel∑
e=1

Ce. (37)

The coordinates of the configuration points can be ascertained by performing interpolation
operations on the relevant elements with regular or irregular patches. Then the discretization of the
boundary integral equation with nth-orderr derivatives yields a system of linear algebraic equations
by deriving the equation for each configuration point, expressed as a parallel matrix:

• The zeroth-order linear system of equation is given by

F̄
(0)

ψ
(0) = Ḡ

(0)

q(0) + ψ̃
(0)

inc; (38)

• The first-order linear system of equation is defined by

F̄
(0)

ψ
(1) = Ḡ

(0)

q(1) + Ḡ
(1)

q(0) − F̄
(1)

ψ
(0) + ψ̃

(1)

inc; (39)

• The nth-order linear system of equation is expressed as
n∑

t=0

(
n
t

) [
F̄

(t)
ψ

(n−t) − Ḡ
(t)

q(n−t)
]

= ψ̃
(n)

inc. (40)

With the boundary conditions applied and terms rearranged, the equation system can be written
as follows:

Cx = D. (41)

where matrix C = F̄
(0)

is a non-symmetric dense matrix, x = ψ
(n) is a boundary-related unknown

parameter, and D is a known vector that consider the incident wave and is derived using the matrix-
vector multiplication operation as follows:

D =

⎧⎪⎪⎨
⎪⎪⎩

Ḡ
(0)

q(0) + ψ̃
(0)

inc n = 0

n∑
t=0

(
n
t

)
Ḡ

(t)
q(n−t) −

n∑
t=1

(
n
t

)
F̄

(t)
ψ

(n−t) + ψ̃
(n)

inc n > 0
. (42)

The consequence of field vector ψ
(0) can be acquired by Eq. (38) for n = 0. Next, the first derivative

value of the field concerning the random variable can be determined by using ψ
(0) for n = 1 in Eq. (39).

Similarly, the field’s derivative of any order can be acquired. Finally, the expected value and variance
can be obtained by substituting the nth-order derivative values into Eqs. (5) and (14).

4 Numerical Examples

In this section, we investigate the precision and effectiveness of the proposed algorithm through
two numerical examples. The code was written in Fortran 90 programming language and run on a
personal PC side computer with a processor of i7-8700 CPU and this research compared the expected
value and standard deviation with the results of Monte Carlo simulations.

4.1 Spherical Model
The first numerical example is the spherical model, as seen in Fig. 2, with a sphere of radius r =

5 centered at (0, 0), which consists of 864 constant elements and is amplified by the amplitude ψ 0 =
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1, and the plane incident wave ψ inc = ψ 0e
ikrcosθ propagating along the x-positive axis. It simulates the

scattered waves and confirms the suggested algorithmic approach’s efficacy.

Figure 2: Illustration of the scattering process of an infinite sphere model

In this research, the numerical and analytical solutions for the real, imaginary and amplitude
parts of the acoustics pressure located at the test points (10, 10, 10 m) at a range of frequencies are
analyzed and are displayed in Fig. 3. For numerical computations, we employed two distinct forms
of boundary integral equations: the conventional boundary integral equation provided by Eq. (21),
and the combined Burton-Miller boundary integral equation (BM) provided by Eq. (24). As observed
in Fig. 3, the numerical results based on CBIE exhibit a little deviation from the analytical solution
at some frequencies, whereas the numerical results based on BM show a greater agreement with the
analytical solution at all frequencies. The frequencies that do not match accurately are called fictitious
feature frequencies, which is a problem encountered in analyzing external sound problems and is not
an inherent property of the arithmetic model. We can see that the results match well using these two
types of numerical calculation methods, which verifies the precision and effectiveness of the IGABEM
algorithm proposed in this paper.

Figure 3: (a) Sound pressure with CBIE; (b) Sound pressure with BM

To directly confirm if the algorithm is accurate, we investigated the amplitude, real and imaginary
distributions of the sound pressure on the limiting smooth surface of the sphere model at incident
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frequencies of 100, 200, and 300 Hz, as shown in Fig. 4. From the figure, it can be noticed that the
amplitude part, real part, and imaginary part of the acoustics pressure also show good symmetry, and
the higher the incident frequency of the incident wave, the more complex the distribution of the field
function and the larger the amplitude of the sound pressure, which depicts that the sound pressure
increases as the frequency increases. In conclusion, the results confirm the precision of the proposed
algorithm.

Figure 4: Sound pressure distribution on smooth surfaces in the limit of spherical models

Next, we analyze the uncertainty of the limit smooth sphere model using the generalized nth-order
perturbation method. The incident frequency is defined as a random variable with a mean value μ of 1
satisfying a Gaussian distribution. Then two specific values are assigned to the coefficient of variation
γ , namely 0.05 and 0.11, and the range of the associated perturbation parameter ε is taken as [0.8, 1.2],
the expectation and standard deviation of the 2nd, 4th, 6th, 8th, and 10th orders are investigated for
different perturbation parameters ε, as depicted in Fig. 5. From the figure, it can be found that as
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the perturbation parameter ε increases, the expectation value and standard deviation increase, and
the higher the derivative order, the more accurate the expectation value and standard deviation of the
field function are, especially for larger γ . Meanwhile, when γ is larger, the advantage of higher order
is more obvious.

Figure 5: Expected values used 2nd, 4th, 6th, 8th, 10th orders for (a) γ = 0.05 and (b) γ = 0.11 with
different ε; Standard deviation for (c) γ = 0.05 and (d) γ = 0.11 with different ε

To analyze the generalized nth-order perturbation method’s accuracy and efficacy in more detail,
we investigated the expectation of the sphere model’s field function at the point (10, 10, 10) for different
order expansion terms when the relevant perturbation parameter ε is 1, the mean value of the Gaussian
distribution function is situated to μ = 1, and the range of intervals of the standard deviation is
established as follows: σ ∈ [0.05, 0.15], we compared it with the results under the Monte Carlo
simulations, as shown in Fig. 6. MCs is a statistical method based on random sampling, in this paper,
we used 500 sample points generated by a random number generator as a control group of MCs and the
simulation results obtained from all the samples were statistically analyzed including the calculation
of the mean and the variance in order to obtain an approximate solution to the problem. From the
figure, it can be observed that as the expansion order increases, the expectation of the field function
obtained by the perturbation method is closer to the value under MCs. It is evident that γ influences
the perturbation method’s computational convergence, the larger the value of γ is, the smaller the
convergence is. The results validate the accuracy and effectiveness of the proposed algorithm.
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Figure 6: Expexted value results for different variation coefficients: (a) γ = 0.05; (b) γ = 0.07; (c) γ =
0.09; (d) γ = 0.11; (e) γ = 0.13; (f) γ = 0.15

4.2 Manta Ray Model
The second numerical example model is a manta ray model with limiting smoothness. We consider

a manta ray model with Neumann boundary conditions and analyze it under the action of plane waves.
The amplitude of the plane wave is ψ 0 = 1 and is represented by ψ inc = ψ 0e

ikrcosθ , where the plane wave
propagates along the positive x-axis in the positive direction. The isogeometric model of this manta
ray consists of 11480 triangular elements, and its 3D solid model is shown in Fig. 7 below.

Figure 7: 3D solid modeling of the manta ray

We use the generalized nth-order perturbation method to analyze the uncertainty of the manta
ray model by setting the incident frequency of the incident wave as a random variable satisfying
a Gaussian distribution, with its mean μ and associated perturbation parameter ε set to 1, Fig. 8
shows the 2nd, 4th, 6th, 8th, and 10th order expectation and standard deviations computed by the
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perturbation method at different coefficients of variation γ , contrasted with the results of the Monte
Carlo simulation. It can be noticed from the figure that as the order increases, the results acquired
using the perturbation method get closer to the results under MCs, indicating that compared to lower-
order procedures, higher-order methods yield more accurate results. In addition, when the coefficient
of variation is [0.05, 0.21], the expected value obtained using the 10th-order perturbation method is
very consistent with the results under MCs. It is worth noting that the convergence of the perturbation
method weakens as the coefficient of variation γ increases, which is due to the limitation of the Taylor
expansion. This further validates the efficiency and accuracy of the proposed generalized nth-order
perturbation method.

Figure 8: Expectation and standard deviation under different coefficients of variation under the
perturbation method vs. results under MCs

To more naturally confirm that the method is exact, we investigated the distribution of the
derivatives of the field function on the limit smooth surface of the manta ray model and analyzed
the cloud distribution of the 1st–3rd order derivatives of the model’s field function when the incident
frequency of incident wave at 200 Hz, as shown in Fig. 9. By analyzing the cloud graphs, we can
evaluate the accuracy of the algorithm in calculating the derivatives of the field function. It can be
noticed in Fig. 9 that the derivatives of the field function of the manta ray model are smooth and
continuous, and the higher the derivative order, the greater the rate of change of the real and imaginary
derivatives of the manta ray model field function at the same frequency. Meanwhile, the field function’s
derivatives distribution shows excellent symmetry, which becomes more complicated with the increase
of the derivative order. The research results confirm the correctness and effectiveness of the proposed
algorithm.

In order to verify the reliability and applicability of the generalized nth-order perturbation
method, we have conducted a study to compare the real part 1st–6th derivatives of the field function
computed by the direct uncertainty analysis method (DSM) for the frequency range [200, 300] with
the results under the FDM, as shown in Fig. 10. In the FDM, we set different step sizes �x of 10−1,
10−3, and 10−5. The finite difference method is a numerical computation method used to calculate the
derivative of a function, which is based on the definition of the derivative and approximates the value
of the derivative by computing the difference of the function at discrete points, as defined below:

s′(x) = s(x + �x) − s(x)

�x
, (43)

where �x indicates a small perturbation related to x.
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Figure 9: The 1st–3rd order derivatives of the field function of the manta ray model at an incident
frequency of 200 Hz

From Fig. 10, it can be found that the results under DSM and FDM have similar numerical trend
and change rule in the same position, and the value of the field function’s derivative reduces with the
increase of the order under a certain frequency. Besides, the result of the derivative under DSM is
very close to the result of FDM, meanwhile, these two methods remain stable throughout the whole
computational region without any anomaly or divergence, which indicates that these two methods are
consistent and accurate in the calculation of the derivatives. In summary, the reliability and validity of
the proposed algorithm is further confirmed by comparing the derivatives of the real part of the field
function computed by DSM and FDM.

To further analyze the precision of DSM and FDM, this paper compares the field function
derivative error values εerr calculated by the two methods at different frequencies, with �x set to 10−1,
10−3 and 10−5, as shown in Table 1. From the table, it is evident that the error value εerr decreases if
the frequency increases. Moreover, the relative error value εerr has been kept in a small range for the
field function of the manta ray model at different derivatives, and the results of the study confirm the
accuracy of the proposed algorithm.
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Figure 10: The 1st–6th order derivatives of the real part of the field function of the manta ray model
at different frequencies

Table 1: The relative error εerr values of the second-order, fourth-order, and sixth-order derivatives of
the field function of the manta ray model

Frequency (Hz) Second derivative Fourth derivative Sixth derivative

10−1 10−3 10−1 10−3 10−1 10−3

200 0.000949 0.000010 0.000930 0.000009 0.000905 0.000009
220 0.000859 0.000009 0.000845 0.000008 0.000825 0.000008
240 0.000785 0.000008 0.000773 0.000008 0.000757 0.000007
260 0.000723 0.000007 0.000713 0.000007 0.000699 0.000007
280 0.000670 0.000007 0.000661 0.000007 0.000650 0.000007
300 0.000625 0.000006 0.000618 0.000006 0.000608 0.000006

5 Conclusion

In this work, a generalized nth-order perturbation technique based on the isogeometric boundary
element method is suggested for the study of uncertainty analysis of three-dimensional acoustic
scattering problems. Due to the difficulty of surface slicing and splicing in the NURBS modeling
process, this paper adopted the Loop subdivision surface to construct the geometric model and used
the same spline function to discretize the boundary integral equations formed by the Helmholtz
equations, which greatly overcomes the discontinuities and low-accuracy problems of the traditional
Lagrangian function approximation of the geometric model and the interpolation of the physical field
calculations. Meanwhile, we introduced the theoretical basis of the perturbation method in detail,
set the incident frequency of the incident wave as the random variable that satisfies the Gaussian
distribution when performing the uncertainty analysis of the three-dimensional acoustic scattering
problem, and verified the precision and efficiency of the algorithm by comparing and analyzing the
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computed results with those under MCs through two numerical examples. In this paper, we combined 
IGABEM with the generalized nth-order perturbation method to consider higher-order perturbation 
effects by generalizing the boundary integral equation to the nth-order, and subsequently, the response 
of the scatterer to the incident wave is evaluated and analyzed quantitatively based on the acoustic field 
distribution at the surface of the scatterer obtained by the solution. Current methods have limitations 
in dealing with input random variables with large variability. The generalized nth-order perturbation 
method approximates the problem by truncating the level expansion, however, the computational 
complexity increases as the order increases, which makes it hard to effectively capture the statistical 
properties of the response function. Although expanding the Taylor expansion of the expansion term 
can boost computational precision, achieving this also raises computational costs. The perturbation 
method uses perturbation parameter expansion and approximation of the analytical solution to solve 
differential equations, but for highly nonlinear problems, the perturbation parameter expansion may 
no longer be valid, which leads to a decrease in the accuracy of the approximate solution. However, 
the homotopy perturbation method can handle nonlinear problems and complex boundary conditions 
more flexibly with higher accuracy and lower computational cost. Therefore, in future research, we can 
adopt the homotopy perturbation method to study complex large-scale problems and we will focus on 
developing an uncertainty analysis method that can effectively handle large coefficients of variation 
to solve this problem.
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