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ABSTRACT

The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical
systems such as piezoelectric energy harvesters. Existing strongly coupled analysis methods based on direct
numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations. Each
formulation has its advantages and disadvantages, and the choice depends on the characteristics of each coupled
problem. This study proposes a new option: a coupled analysis strategy that combines the best features of the existing
formulations, namely, the hybrid partitioned-monolithic method. The analysis of inverse piezoelectricity and the
monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative
hierarchical algorithm. In a typical benchmark problem of a piezoelectric energy harvester, this research compares
the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,
discussing the accuracy, stability, and computational cost. The proposed hybrid concept is effective for coupled
multi-physics problems, including various coupling conditions.
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1 Introduction

In piezoelectric materials, the electric charge is accumulated in response to mechanical strain,
termed the direct piezoelectric effect, while the material changes size in response to an applied electrical
potential, known as the inverse piezoelectric effect [1], and these effects interact with each other.
These effects have been utilized to develop sensors and actuator devices in various electro-mechanical
systems such as piezoelectric energy harvesters [2], robotic applications [3,4], biomimetic robots [5,6],
piezoelectric-actuated microgrippers [7,8], and precision drive systems [9,10]. The piezoelectric device
and the circuit are integrated and interact in these systems. Hence, their electro-mechanical behavior
is formulated as the coupled inverse and direct piezoelectric and circuit interaction.

This coupling phenomenon has been addressed using simplified models such as the Euler-
Bernoulli beam theory for the structural element [11], the weakly coupled model for structural
and piezoelectric coupling [12], the equivalent capacitance approximation for the piezoelectric
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continuum [13], and a lumped circuit model analytically derived with three degrees of freedom for
modeling the mechanical-to-electrical conversion by a serial bimorph piezoelectric cantilever as an
extension of the single degree of freedom model [14], among others. These models have been effectively
used to derive both analytical and numerical solution methods. However, direct numerical modeling
of this coupling phenomenon will be vital in designing advanced electro-mechanical systems [15–18].
The term ‘direct’ indicates that the governing equations are not transformed into a different form
prior to spatial finite element discretization [19].

Due to its strong electro-mechanical conversion characteristics, considerable attention has been
devoted to the piezoelectric energy harvesting device [20]. The most typical model of this device is a thin
cantilever bimorph consisting of two piezoelectric and one intermediate metal layer [11]. Despite the
simple configuration of this model, the strongly coupled analysis method based on direct numerical
modeling is required for accurate prediction of the electro-mechanical behavior due to the inverse
and direct piezoelectric coupling [21], the complex distribution of the induced electrical potential [22],
significant three-dimensional deformation [21], and the strongly coupled piezoelectric oscillator and
circuit [23].

Initially, the monolithic method was proposed in studies on direct numerical modeling for inverse
and direct piezoelectric and circuit coupling [15], where the discretized governing equations were
formulated as a single equation system. The coupling conditions are solved accurately in monolithic
analysis since the monolithic formulation satisfies them directly. However, partitioned analysis appears
to be computationally efficient [24]. In addition, existing codes can be reused for partitioned analysis
due to software modularity. Hence, the strongly coupled partitioned iterative method was proposed
based on direct numerical modeling for inverse and direct piezoelectric and circuit coupling [23]. This
method decomposes all fields and satisfies their coupling conditions using the iterative method. The
partitioned algorithm is strongly coupled if the coupling terms are corrected to sufficient accuracy
[25,26]. This coupling condition can be achieved if coupling iterations or inter-field iterations are
performed and the iterative procedure is convergent [27,28]. However, the partitioned analysis of
piezoelectricity and circuit imposes a critical time increment smaller than the time constant of the
general RC circuit on the time increment as the convergence condition [23].

Accordingly, this study proposes a new method that combines the best features of the partitioned
and monolithic formulations, i.e., the hybrid partitioned-monolithic method. The analysis of inverse
piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly
coupled using the block Gauss-Seidel (BGS) algorithm. Considering typical benchmark problems, we
compare the results from the proposed method with those from the conventional strongly coupled
partitioned iterative method and the analytical solutions and discuss the accuracy, convergence
properties, and computational cost.

2 Structure-Piezoelectric-Circuit Interaction

The circuit-integrated piezoelectric device is schematically shown in Fig. 1, where the piezoelectric
device is connected to the circuit via electrodes. The pseudo-piezoelectric material modeling [22],
which sets the piezoelectric constant matrix to 0 and the dielectric constant matrix to 1, is used for
the electrical conductor domain. This approach ensures that the system is governed by the common
equations for inverse and direct piezoelectric and circuit coupling.



CMES, 2024 3

+

-

�u

��

��
Electric
Circuit

��

�q

S+
c

S-
cElectrode

Electric Conductor

Piezoelectric
Material

Figure 1: Circuit-integrated piezoelectric device

2.1 Piezoelectric Material Equations
The equilibrium equations for a piezoelectric continuum are described as follows:

σij,j + fi = 0 (1)

Di,i = 0 (2)

where σ ij is the mechanical stress tensor component, f i and Di are the body force and electric
displacement vector components, respectively, and, ‘j’ is the differential with respect to the j-th
coordinate. σ ij and Di are provided by the following linear piezoelectricity constitutive equations.

σij = CE
ijklSkl − ekijEk (3)

Di = eiklSkl + εS
ikEk (4)

where Cijkl, eijk, Sij, and εij are the tensor components of elasticity, piezoelectric constant, mechanical
strain, and dielectric constants, respectively, and Ei is the electric field vector component. The
superscript E indicates that the quantity is determined under the constant electric field, and the
superscript S indicates that the quantity is determined under the constant mechanical strain field.
Sij and Ei are respectively expressed as follows:

Sij = (
ui,j + uj,i

)
/2 (5)

Ei = −ϕ,i (6)

where ui is the i-th vector component of the mechanical displacement, and ϕ is the electric potential.

Eqs. (1) through (6) are spatially discretized in the global coordinate system using the standard
finite element formulation.

Muuü + Kuuu + Kuϕϕ = f (7)

KT
uϕ

u + Kϕϕϕ = qe + qc (8)

where Muu is the global matrix of the mechanical mass, Kuu is the global matrix of the mechanical 
stiffness, Kuϕ is the global matrix of the piezoelectric stiffness, Kϕϕ is the global matrix of the dielectric 
stiffness, u is the nodal global state variable vector for the structural displacement, ϕ is the nodal 
global state variable vector for the electric potential, f is the global equivalent external supply vector 
for the mechanical force, q is the global equivalent external supply vector for the charge, the subscript 
e is “external”, and the subscript c is “circuit”. In these equations, u, ϕ, and qc are unknown variables.
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Shell elements are efficient for analyzing the bending of a thin bimorph structure, whereas solid
elements are necessary for describing complicated electricity [22]. Hence, the analysis of inverse piezo-
electricity for Eq. (7) uses the shell elements (referred to as the shell analysis of inverse piezoelectricity),
while the analysis of direct piezoelectricity for Eq. (8) uses the solid elements [22] (referred to as the
solid direct piezoelectric analysis). Their resultant nodal properties are exchanged as follows: the
electrical forces of the latter are changed to the shell mechanical forces and moments using their
balances, while the mechanical displacements of the former are changed to those of the solid mesh
using the finite element shape function. The former uses modeling the piezoelectric bimorph composite
as a single shell structure, evaluating effective properties using the homogenization method [22].

2.2 Electric Circuit Equation
The electrical resistive load is considered the electric circuit in Fig. 1. The single-degree-of-freedom

governing equation can be described as follows:

RQ̇ + Vp = Ve (9)

where R is the electric resistance, Q is the electric charge, V p is the electric potential gap between the
electrodes given by the piezoelectric continuum, and V e is the external electric voltage.

2.3 Continuity Conditions between Piezoelectric Material and Circuit
The continuity conditions between the piezoelectric material and the circuit are imposed on the

interface. Assuming the instantaneous distribution of charges in electrodes, these equations can be
described as follows:

Vp = ϕ+
∗ − ϕ−

∗ (10)

qc =
∫

Sc+
Nϕ

(
Q/Sc

+
)

dS −
∫

Sc−
Nϕ

(
Q/Sc

−
)

dS (11)

where S+
c and S-

c are the areas of the electrodes; the subscripts + and − correspond to the positive
and negative poles defined in the general circuit expression, respectively; ϕx

∗ (x is + or −) is the electric
potential at a point in Sx

c where the circuit is connected; and Nϕ is the global assemblage of the electric
potential interpolation functions.

3 Hybrid Partitioned-Monolithic Method

The electro-mechanical system can be partitioned into mechanical and electrical subsystems,
with the electrical subsystem further partitioned into the piezoelectric continuum and the circuit.
Following this hierarchical decomposition, a previous study [23] solved the electrical subsystem using a
partitioned iterative algorithm (either the conventional strongly coupled partitioned iterative method
or the fully partitioned method). However, for the coupling iteration to converge, the critical value
using the circuit characteristic time must be met by the time increment. Therefore, the coupled
piezoelectric and circuit interaction is monolithically analyzed in this study. Hierarchically, the analysis
of inverse piezoelectricity for the mechanical subsystem and the monolithic analysis for the electrical
subsystem are strongly coupled using a partitioned iterative algorithm (the hybrid partitioned-
monolithic method). Fig. 2 shows the conceptual view of the hybrid partitioned-monolithic method
proposed in the current study.
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Figure 2: Conceptual view of the hybrid partitioned-monolithic method

3.1 Temporal Discretization
Substituting the relationships among the state variables given by Newmark’s β method [19] into

Eqs. (7) and (8), they can be rearranged as follows:

Kuu
∗t+�tu + Kuϕ

t+�tϕ = t+�tf∗ (12)

KT
uϕ

t+�tu + Kϕϕ
t+�tϕ = t+�tqe + t+�tqc (13)

where t + �t is the current time, �t is the time increment, and Kuu
∗ and t+�tf∗ are defined, respectively,

as follows:

Kuu
∗ ≡ Kuu + (

1/β�t2
)

Muu (14)
t+�tf∗ ≡ t+�tf + (

1/βΔt2
)

Muu

[
tu + Δttu̇ + (1/2 − β)Δt2tü

]
(15)

Applying the generalized trapezoidal rule for Eq. (9), it can be rearranged as follows:
t+ΔtQ = tQ + Δt

[
(1 − γ ) tQ̇ + γ

(
t+ΔtV e − t+ΔtV p

)
/R

]
(16)

3.2 Interface Degrees of Freedom Transformation Matrices between Piezoelectric Continuum and
Circuit

The continuity or coupling conditions (10) and (11) can be expressed as follows:

Vp = Tpϕ (17)

qc = TcQ (18)



6 CMES, 2024

where the matrices Tp and Tc are given, respectively.

Tp =
∫

Sc+

(
Nϕ

T
/Sc

+
)

dS −
∫

Sc−

(
Nϕ

T
/Sc

−
)

dS (19)

Tc =
∫

Sc+

(
Nϕ/Sc

+
)

dS −
∫

Sc−

(
Nϕ/Sc

−
)

dS (20)

The formulation of Tc in Eq. (20) is given by taking out the common factor Q of the terms in the
right-hand side of Eq. (11). Conversely, the formulation of Tp has a wide variation. This study uses
the formulation equivalent to that for the equivalent nodal force for the surface force. Then, Eq. (19)
for the formulation of Tp is provided such that it satisfies the relationship of Tp = Tc

T. These matrices
transform the interface DOFs of state variables between the piezoelectric continuum and the circuit.

3.3 Monolithic Equation for Coupled Piezoelectric and Circuit Interaction
The direct piezoelectric Eq. (13) and the circuit Eq. (9) are combined using the coupling conditions

(17) and (18), and their monolithic equation can be provided as follows:

KT
uϕ

t+�tu + Kϕϕ
∗t+�tϕ = t+�tqe + t+�tqc

∗ (21)

where Kϕϕ
∗ and t+�tqc

∗ are given, respectively, as

Kϕϕ
∗ = Kϕϕ + (γΔt/R) TcTp (22)

t+�tqc
∗ = Tc

{
tQ + Δt

[
(1 − γ ) tQ̇ + γ t+ΔtV e/R

]}
(23)

Solving Eq. (21) corresponds to the monolithic analysis of the coupled piezoelectric and circuit
interaction. Hierarchically, Eqs. (12) and (21) are strongly coupled using the partitioned iterative
algorithm in the next section.

3.4 Partitioned Analysis of Mechanical and Electrical Subsystems
Applying the BGS algorithm to Eqs. (12) and (21) yields the following equations:

Kuu
∗t+�tu(i) = t+�tf∗ − Kuϕ

t+�tϕ(i−1) (24)

Kϕϕ
∗t+�tϕ(i) = t+�tqe + t+�tqc

∗ − KT
uϕ

t+�tu(i) (25)

where i is the i-th BGS iteration. The proposed hybrid partitioned-monolithic method is shown in
Fig. 2. In each BGS iterative step, firstly, the inverse piezoelectric Eq. (24) is solved to obtain the
current displacement t+�tu(i), and this displacement is substituted into the monolithic piezoelectric-
circuit interaction Eq. (25), and then this equation is solved to obtain the current potential t+�tϕ(i).
This procedure is repeated until the following convergence criterion is satisfied:

max
1≤n≤N

∣∣(ϕ(i)
n − ϕ(i−1)

n

)
/ϕ(i)

n

∣∣ < 0.1% (26)

where n is the number of each node, and N denotes the number of nodes.

In the conventional fully partitioned method [23], the partitioned method is also utilized for the
coupled piezoelectric and circuit interaction, as shown in Fig. 2. If the partitioned method is applied
for the coupled piezoelectric and circuit interaction, the following condition must be satisfied by the
time increment �t for the convergent coupling iteration [23]:

Δt ≤ Δtc = RCp/γ (27)
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where �tc is the critical time increment, and Cp is the effective parameter of the capacitance of the
piezoelectric material. Unlike the fully partitioned method [23], this condition is not imposed on the
proposed hybrid method.

4 Numerical Tests Using Typical Piezoelectric Energy Harvester Model
4.1 Problem Setup

A typical piezoelectric energy harvester model in Fig. 3 [11] is considered. In this figure, the
cantilevered beam is a symmetric bimorph with three layers. The outer two piezoelectric (PZT-5H)
layers of each bimorph are poled oppositely in the thickness direction for the series connection of the
electrical outputs. The electrodes covering the surfaces are sufficiently thin compared to each bimorph.
Table 1 summarizes the material properties of these layers. The resistive load R is connected to the
electrodes. In Sections 4.2.1, 4.2.2, and 4.2.3, R is set as 470 Ω, the smallest among the experimental
values used in the literature [11], to consider the very small �tc. In addition, Section 4.2.4 considers
the general value of R to discuss the range of R where the proposed method is efficient. The harmonic
translation (the acceleration level g = 9.81 m/s2) is applied to the cantilever at the base in the out-of-
plane direction.

PZT-5H
Electrode

R

z

xy

L

ubase

Brass
Poling direction

Tip
mass

Lt  Lt

Figure 3: Typical model of the piezoelectric energy harvesting device

Table 1: Properties of the bimorph cantilever’s geometry and materials

PZT-5H Brass Electrodes

Thickness h (m) 0.265 × 10−3 0.140 × 10−3 0.0100 × 10−3

Mass density ρ (kg/m3) 7500 9000 1.0∗1

Young’s modulus E (GPa) 60.6 105 1.0 × 10−9∗1

Poisson’s ratio ν 0.3 0.3 0.3
Piezoelectric constant e31 (C/m2) 16.6 0∗2 0∗2

Permittivity ε33 (F/m) 25.55 × 10−9 1.0∗2 1.0∗2

Note: ∗1 These values are determined such that the contribution of the electrodes to the stiffness and the inertia in the dynamics
is negligible. ∗2 These values are determined by the pseudo piezoelectric material method [22].

The electro-mechanical responses of the piezoelectric micro-components show size dependency
[29,30]. In Fu et al. [30], the microbeam with the thickness h = κ × l is demonstrated for the factor
κ up to 50 with the length parameter l = 0.428 μm, showing that the strain gradient elasticity and
flexoelectricity contribute to the size-dependent electro-mechanical response. In this study, κ = h/l
the thickness is 619. The beam size is the same as in the literature [11], where the size-dependent
electro-mechanical response is not deemed. Hence, the size-dependent electro-mechanical response
is not considered.
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Fig. 3 indicates that the mass can be added to the tip of the cantilever beam. In the case with
the added mass, the weight is set at 0.239 g and positioned at the tip, a short length of which half
the longitudinal length is given as Lt = 0.25 mm. The length of the added mass area is about 1%
of the total longitudinal length of the beam L = 24.53 mm, and the gravity center of the added mass
area is equivalent to the center of the tip section of the beam. The width of the beam b is set at 6.4 mm.
Table 1 summarizes the thickness of each layer. In the analysis for the model with the added mass, the
added mass density is set for the added mass domain, while in the analysis for the model without the
added mass, this area is removed from the finite element model.

The mechanical damping in the experiment used for comparison [11] is considered using the mass-
proportional damping ratio γ , which can be formulated as [15]

Cuu = γ Muu (28)

where γ is equal to 2ζωn, ζ is the damping ratio, and ωn is the natural angular frequency. Without the
added mass, the theoretical value of ωn is 3157.9 rad/s, corresponding to the natural frequency f n =
502.6 Hz. In the case with the added mass, the theoretical value of ωn is 2137.3 rad/s, corresponding to
f n = 340.2 Hz. The damping ratios for the cases without and with the added mass were ζ = 0.00874
rad m/s and 0.00845 rad m/s, respectively, in the corresponding experiment [11].

Mixed Interpolation of Tensorial Components [19] and hexahedral 20-node elements are used for
the shell inverse and solid direct piezoelectric analyses, respectively. The in-plane divisions of meshes
are 10 and 1, respectively, along the axial and width directions. The division of the solid mesh is
10 along the out-of-plane direction (3 for each PZT-5H layer, 2 for the brass layer, and 1 for each
electrode). The time integration parameters are set at β = 0.5 and γ = 0.5 for the unconditionally
stable setup of the employed time integration methods. Nevertheless, in the case of the fully partitioned
method [23], �tc = 7.11 × 10−6 s is imposed on �t following Eq. (27).

4.2 Results and Discussion
4.2.1 Basic Behaviors of Typical Piezoelectric Energy Harvester Model

Firstly, to demonstrate the proposed hybrid method’s capability to simulate the basic behaviors
of the typical piezoelectric energy harvester model, the time history of the transverse displacement
of the bimorph’s tip relative to its base and its close-up view are obtained using the proposed hybrid
method, as shown in Figs. 4A and 4B. Similarly, the time history of the voltage at the resistive load
and its close-up view are obtained using the proposed hybrid method, as shown in Figs. 4C and 4D.
A time increment Δt = 1.0 × 10−6 s < Δtc is employed for these time histories to ensure that Eq. (27)
is satisfied. This constraint applies only to the fully partitioned method for achieving convergent
coupling iteration [23]. The base excitation frequency for the bimorph with added mass is set to
f = 344.2 Hz, the resonance frequency. In both mechanical and electrical vibrations, the amplitudes
increase monotonically in the initial transient state due to resonance and converge to constant values
in the quasi-steady state due to the presence of specific damping. Figs. 4B and 4D demonstrate that the
results from the proposed hybrid and the conventional strongly coupled partitioned iterative methods
are indistinguishable. In both mechanical and electrical vibrations, the resonance frequency in the case
with the added mass is lower than in the case without the added mass, and the amplitude in the case
with the added mass is larger than in the case without the added mass. These results accurately simulate
the essential characteristics of electro-mechanical forced vibration, demonstrating that the added mass
decreases the resonance frequency and increases the mechanical displacement amplitude. In addition,
with the increase in the displacement amplitude of mechanical vibration, the voltage amplitude of
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electrical vibration increases due to the direct piezoelectric effect. The simulation also showed that
the phase delay of the electrical vibration relative to the mechanical vibration is approximately 90°,
consistent with the fundamental characteristic of the general RC circuit with an AC power source.
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Figure 4: Time histories of the transverse displacement of the bimorph’s tip relative to its base (A and
B) and the electric potential difference at the resistive load (C and D) for the piezoelectric bimorph
energy harvester model with the added mass

4.2.2 Accuracy of Proposed Hybrid Method

The solutions are compared to those given by the fully partitioned method [23] and the analytical
solutions [11] to illustrate the accuracy of the proposed hybrid method. Figs. 4B and 4D exhibit that
the time histories provided by the proposed and conventional strongly coupled partitioned iterative
methods are indistinguishable for the base excitation using the resonance frequency. In order to
confirm the same level of accuracy of the proposed hybrid method for the wide range of the base
excitation frequency, the frequency response functions (FRFs) are compared to those described by
the fully partitioned method [23] and their analytical solutions [11]. Figs. 5A and 5B are the FRFs
for the transverse displacement of the bimorph’s tip relative to its base, and Figs. 5C and 5D are the
FRFs for the voltage at the resistive load. Figs. 5A and 5C are the FRFs for the case without the added
mass, whereas Figs. 5B and 5D are the FRFs for the case with the added mass. The time increment
Δt = 1.0 × 10−6 s < Δtc is used for these time histories such that Eq. (27) is satisfied. However, this
constraint is imposed on only the fully partitioned method for the coupling iteration convergence [23].

Figs. 5A and 5C indicate that the resonance frequency for the case without the added mass is
determined to be f = 510.6 Hz. At the resonance, the mechanical displacement amplitude measures
82.13 μm, and the voltage amplitude of the electric vibration is 0.125 V. These results, obtained using
the proposed hybrid and conventional strongly coupled partitioned iterative methods, coincide. In the
case with the added mass, as illustrated in Figs. 5B and 5D, the mechanical displacement amplitude
measures 149.6 μm, and the voltage amplitude of the electric vibration is 0.197 V at the resonance
frequency of f = 344.2 Hz. These results, derived from the proposed hybrid and conventional strongly
coupled partitioned iterative methods, coincide. In both mechanical and electric FRFs, the resonance
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frequency in the case with the added mass is lower than that without the added mass, and the amplitude
in the case with the added mass is higher than that in the case without the added mass. According to
these outcomes, following the fundamental characteristics of mechanical forced vibration, the presence
of the added mass decreases the resonance frequency and increases the displacement amplitude of
the mechanical FRF. Concurrently, the voltage amplitude of the electric FRF increases due to the
direct piezoelectric effect. As indicated in Fig. 5, the FRFs provided by the proposed and conventional
strongly coupled partitioned iterative methods are indistinguishable. In addition, the numerical FRFs
closely match the analytical FRFs, demonstrating the sufficient accuracy of the proposed hybrid
method.

(A)

(B)

(C)

(D)

Figure 5: Frequency response functions of the transverse displacement of the bimorph’s tip relative
to its base (A and B) and the electric potential difference at the resistive load (C and D) for the
piezoelectric bimorph energy harvester model with no added mass (A and C) and with the added
mass (B and D)

4.2.3 Numerical Characteristics of Proposed Hybrid Method

The solution’s dependency on the time increment was examined to show the numerical character-
istics of the proposed hybrid method. Fig. 6 displays the step-by-step change in the electric charge of
the circuit during the block Gauss-Seidel (BGS) iteration of the fully partitioned method, employing
time increments �t larger than �tc are used. As shown in this figure, the convergent result cannot be
obtained from the fully partitioned method for Δt > Δtc, resulting in an alternating sign change and an
increasing amplitude magnitude as the iteration progresses. Conversely, the proposed hybrid method
does not impose restrictions on �t by �tc. Fig. 7 exhibits the mechanical FRFs for the transverse
displacement of the bimorph’s tip relative to its base, as calculated by the proposed hybrid method for
various �t. These FRFs for �t smaller than 1.0 × 10−4 s closely resemble each other in both cases,
with and without the added mass.
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Figure 6: Transitions of the electric charge in the circuit of the piezoelectric energy harvesting model,
without added mass in the block Gauss-Seidel loop of the initial time step for the fully partitioned
method, use various time increments Δt = 1.0 × 10−5 s > Δtc

(A) (B)

Figure 7: Frequency response functions of the transverse displacement of the bimorph’s tip relative to
its base for piezoelectric energy harvesting models without added mass (A) and with added mass (B)
are given by the proposed hybrid method using various time increments

Tables 2 and 3 list the resonance frequencies and the corresponding displacement amplitudes of
the mechanical Frequency Response Functions (FRFs) and the corresponding voltage amplitudes of
the electric FRFs for various time increments. These tables show that the resonant states for �t =
1.0 × 10−6 s using the fully partitioned and proposed hybrid methods are very close. Furthermore,
the solutions given by the proposed hybrid method can be considered sufficiently accurate for �t =
1.0 × 10−4 s. In both cases, without and with added mass, as shown in Tables 2 and 3, the resonant
frequencies for �t = 1.0 × 10−6 s and 1.0 × 10−5 s are equal to each other to the fourth digit, the
relative difference of the corresponding displacement amplitude for �t = 1.0 × 10−5 s to that for 1.0
× 10−6 s is about 0.01%, and the relative difference of the corresponding voltage amplitude for �t =
1.0 × 10−5 s to that for 1.0 × 10−6 s is about 0.01%. Hence, the solution for �t = 1.0 × 10−6 s can
be considered convergent. Fig. 8 shows the relative errors of the solutions for various �t, where the
solution for �t = 1.0 × 10−6 s is used as the reference solution. As shown in Fig. 8, the relative error
of the solution for �t = 1.0 × 10−4 s is less than a few percent. Hence, the proposed hybrid method
can be very efficient for analyzing the problem of inverse and direct piezoelectric and circuit coupling
since it can use a time increment of 100 times larger �t with sufficient accuracy than that provided by
the fully partitioned method [23].
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Table 2: Resonance frequencies, the magnitudes of the relative displacement of the tip to the base, and
the voltage for the various time increments for the case without the added mass

Method �t (s) Resonant freq.
(Hz)

Relative disp.
(μm)

Voltage (V)

Partitioned 1.0 × 10−6 510.6 82.13 0.1250
Hybrid 1.0 × 10−6 510.6 82.13 0.1250

1.0 × 10−5 510.6 82.14 0.1249
7.0 × 10−5 508.5 82.81 0.1259
8.0 × 10−5 507.9 83.02 0.1263
9.0 × 10−5 507.1 83.26 0.1267
1.0 × 10−4 506.3 83.52 0.1271

Note: ∗Theoretical solutions of the resonance frequency, the relative displacement, and the voltage are 502.6 Hz,
82.91 μm, and 0.1485 V, respectively.

Table 3: Resonance frequencies, the magnitudes of the relative displacement of the tip to the base, and
the voltage for the various time increments for the case with the added mass

Method �t (s) Resonant freq.
(Hz)

Relative disp.
(μm)

Voltage (V)

Partitoned 1.0 × 10−6 344.2 149.60 0.1971
Hybrid 1.0 × 10−6 344.2 149.60 0.1970

1.0 × 10−5 344.2 149.61 0.1970
7.0 × 10−5 343.5 150.16 0.1978
8.0 × 10−5 343.3 150.33 0.1982
9.0 × 10−5 343.2 150.52 0.1983
1.0 × 10−4 342.9 150.76 0.1986

Note: ∗Theoretical solutions of the resonance frequency, the relative displacement, and the voltage are 304.2 Hz,
152.99 μm, and 0.1950 V, respectively.

4.2.4 Resistive Road Range for Efficient Analysis of Proposed Method

Finally, this study considers the range of the resistive load R where the proposed method is
efficient. The piezoelectric bimorph energy harvester model with no added mass is considered here. A
time increment td that can provide sufficiently accurate solutions is defined. In the present problem,
with the base excitation frequency near resonance, td can be expressed as td = Tn/d = 2π/(ωnd), where
Tn is the natural period, and d is the division number of Tn. If tc < td, then the hybrid partitioned-
monolithic method is more efficient than the fully partitioned method. For the piezoelectric energy
harvester model in Fig. 3, the matched impedance Ropt, which gives maximum shunt damping, the
equivalent capacitance of the harvester Cp, and the resonance angular frequency ωopt corresponding
to Ropt can be related as ωoptCpRopt = 1/

(
1 + k2

)1/2
[31], where k2 is the effective electro-mechanical

coupling coefficient. It can be reduced as

ωnCpRopt = 1 (29)
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since ωopt is close to ωn and k2 is much smaller than 1. For the present problem, Cp is given as 7.568
× 10−9 F, and ωn is given as 3.1579 × 103 rad/s, and Eq. (29) gives Ropt = 41.8 kΩ, which is close to
44.9 kΩ resulting in the strongest attenuation of the peak vibration amplitude in the corresponding
experiment by Erturk et al. [11]. Fig. 9 shows the FRFs with R = 44.9 kΩ (close to Ropt) and 995 kΩ (the
largest among the experimental values used in the literature [11]), and 470 Ω (the smallest among the
experimental values used in the literature [11]) obtained using the proposed method and the theoretical
solution [11]. R = 44.9 kΩ near Ropt provides strong attenuation, and the resonant frequency changes
with R. The condition tc < td for the efficiency of the proposed hybrid method can be rewritten using
tc = RCp/γ (γ = 1/2) in Eq. (27), td = 2π/ (ωnd), and Eq. (29) and suitably rearranged as follows:

R < (π/d) Ropt (30)

(A) (B)

Figure 8: Relative errors between the solution for �t = 1.0 × 10−6 s and that for various time increments
in each property in the cases without the added mass (A) and with the added mass (B)

(A) (B)

Note: Black lines are for R = 470 �, red lines are for R = 44.9 k�, blue lines are for R = 995 k�; dotted lines with 
circles are given by the proposed hybrid method, and solid lines are given by the theoretical solution [11].

Figure 9: Frequency response functions (FRFs) of the transverse displacement of the bimorph’s tip
relative to its base (A) and the electric potential difference at the resistive load (B) for the piezoelectric
bimorph energy harvester model with no added mass are analyzed
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In the present problem, d = Tn/td = 20 is determined from the numerical experiment in the
previous section. Then, π/d is given as approximately 0.2. Hence, the proposed hybrid method is more
efficient than the fully partitioned method [23] for R smaller than 0.2Ropt.

5 Concluding Remarks

This study proposes a hybrid partitioned-monolithic method for the strongly coupled analysis of
the structure, piezoelectric, and circuit interaction in advanced electro-mechanical systems. The pro-
posed hybrid method combines the best features of existing partitioned and monolithic formulations
based on hierarchical decomposition, where the analysis of inverse piezoelectricity and the monolithic
analysis of the coupling of the piezoelectric continuum and the electric circuit are strongly coupled
using a partitioned iterative algorithm. The critical time increment, equivalent to the time constant of
the general RC circuit, must be satisfied by the partitioned method for direct piezoelectric and circuit
coupling. In contrast, this constraint does not restrict the proposed hybrid method since it formulates
monolithically direct piezoelectric and circuit coupling. The direct piezoelectric and circuit equations
are combined using the interface conditions, and the monolithic equation system for the piezoelectric-
circuit coupling is solved directly.

The proposed hybrid method is applied to the numerical analyses of cantilevered piezoelectric
energy harvester models, which are typical benchmark problems, and the resulting solutions are
very accurate in comparison to those from the theoretical and previous strongly coupled partitioned
iterative methods across a wide range of base exciting frequencies. In these analyses, the proposed
hybrid method is computationally efficient since the time increment is not restricted by the circuit’s
time constant. More specifically, the resistive load for which the proposed method is more efficient
than the conventional fully partitioned method is smaller than that comparable with the matched
impedance.

In general, coupled multi-physics problems include various types of coupling conditions, and the
formulations suitable for these conditions differ. Hence, the proposed hybrid concept will be universal
for these problems. Future work will apply methods based on this hybrid concept to coupled multi-
physics problems, each consisting of three or more phenomena.
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