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Explicit Shifted Second-kind Chebyshev Spectral Treatment for
Fractional Riccati Differential Equation

W. M. Abd-Elhameed1, 2, * and Y. H. Youssri2

Abstract: This paper is confined to analyzing and implementing new spectral solutions
of the fractional Riccati differential equation based on the application of the spectral tau
method. A new explicit formula for approximating the fractional derivatives of shifted
Chebyshev polynomials of the second kind in terms of their original polynomials is
established. This formula is expressed in terms of a certain terminating hypergeometric
function of the type 4F3(1). This hypergeometric function is reduced in case of the integer
case into a certain terminating hypergeometric function of the type 3F2(1) which can be
summed with the aid of Watson’s identity. Six illustrative examples are presented to ensure
the applicability and accuracy of the proposed algorithm.

Keywords: Chebyshev polynomials of the second kind, spectral methods, linearization
formula, hypergeometric functions.

1 Introduction
The class of Jacobi polynomials has occupied a great deal of attention from both theoretical
and practical points of view. Six celebrated special polynomials of Jacobi polynomials were
extensively used for various purposes. Four kinds of Chebyshev polynomials are special
kinds of Jacobi polynomials. The first and second kinds are ultraspherical polynomials,
while the third and fourth kinds are not. For some theoretical and practical applications
of the four kinds, one can be referred to Doha et al. [Doha, Abd-Elhameed and Youssri
(2013); Abd-Elhameed, Doha, Youssri et al. (2016); Doha, Abd-Elhameed and Bassuony
(2015)]. Masjed-Jamei [Masjed-Jamei (2006)] has introduced two new kinds of Chebyshev
polynomials, and he called them fifth- and sixth- kinds of Chebyshev polynomials.
The reason for calling them Chebyshev polynomials was due to their trigonometric
representations. Some numerical algorithms for solving some types of fractional differential
equations were developed based on employing the fifth- and sixth-kinds, see Abd-Elhameed
et al. [Abd-Elhameed and Youssri (2018, 2019)].
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The branch of fractional calculus is an old branch but its importance has increased in the
recent decades due to its broad applications in almost all disciplines of applied sciences. For
example, they arise in the branches of mathematics, engineering, physics, fluid mechanics,
electrochemistry, optics, and medicine. For some applications of the fractional calculus, one
can be refereed to sun et al. [Sun, Zhang, Baleanu et al. (2018); Anastassiou and Argyros
(2016); Rudolf (2000)]. Several contributions were performed for investigating fractional
initial and boundary value problems. In this regard, a variety of numerical techniques were
utilized to solve different fractional differential equations. Some of the used methods are:
the finite difference method [Meerschaert and Tadjeran (2006)], Adomian’s decomposition
method [Daftardar-Gejji and Jafari (2007)], wavelets methods [Abd-Elhameed and Youssri
(2015)], and operational matrix methods [Abd-Elhameed and Youssri (2016a,b)]. Some
other recent methods can be found in Jena et al. [Jena, Chakraverty and Baleanu (2019);
Jena, Chakraverty and Jena (2019); Alquran and Jaradat (2018); Ali, Alquran and Jaradat
(2019)].

Riccati differential equation is of great importance in a variety of disciplines of applied
science, see for instance Einicke et al. [Einicke, White and Bitmead (2003)]. The fractional
Riccati differential equation has been investigated by proposing a large number of analytical
and numerical algorithms. Some of the analytic used methods are: homotopy perturbation
method [Khan, Ara and Jamil (2011)], modified homotopy perturbation method [Odibat and
Momani (2008)], the Legendre wavelet operational matrix method [Balaji (2015)], Taylor
collocation method [Öztürk, Anapalı, Gülsu et al. (2013)] and Jacobi collocation method
[Singh and Srivastava (2019)]. For some other studies concerning these kinds of equations,
one can be refereed to khan et al. [Khan, Ara and Khan (2013); Salehi and Darvishi (2016);
Khader (2013)].

The problem of representing the high-order integer derivatives of different orthogonal
polynomials in terms of their original polynomials is a very important problem in
spectral and pseudospectral methods, since these explicit formulas if available serve in
obtaining various spectral solutions using the different versions of spectral methods. Such
derivatives for Jacobi polynomials can be found in Doha [Doha (2002)], and for Chebyshev
polynomials of the third and fourth kinds can be found in Doha et al. [Doha, Abd-Elhameed
and Bassuony (2015)].

The approach of employing fractional operational matrices of derivatives was successfully
followed by a large number of authors. The use of these operational matrices along with
utilizing suitable spectral methods enable one to obtain semi analytic solutions for a variety
of fractional differential equations (see, for example Abd-Elhameed et al. [Abd-Elhameed
and Youssri (2016a,b)]). In the current paper, instead of employing the operational matrices
of derivatives, we propose a new and different technique which is built on deriving explicit
formula for the fractional derivatives of the shifted Chebyshev of the second kind, and after
that utilize the tau spectral method for proposing semi analytic solution of fractional Riccati
differential equation. To the best of our knowledge, this approach is new and differs from
the other approaches used for handling fractional differential equations. We do believe that
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this new approach can be used for treating other types of fractional differential equations.

The structure of the paper is as follows. In Section 2, some preliminaries of the fractional
calculus theory are presented and also some properties of Chebyshev polynomials of
the second kind are exhibited. In Section 3, a new formula expressing approximately
the fractional derivatives of the shifted Chebyshev polynomials of the second kind is
established. Moreover, we show that the well-known formula of the integer derivatives can
be extracted from this formula. In Section 4, we analyze and implement a numerical method
based on utilizing the spectral tau method for solving the fractional Riccati differential
equation. Section 5 is devoted to the investigation of the convergence and error analysis.
In Section 6, some illustrative numerical examples are presented aiming to validate the
accuracy and the efficiency of the proposed algorithm. Finally, some concluding remarks
are given in Section 7.

2 Preliminaries and fundamentals
This section is devoted to presenting some preliminaries of the fractional calculus theory.
In addition, some properties of Chebyshev polynomials of the second kind and their shifted
ones are also presented.

2.1 Some properties of Chebyshev polynomials of the second kind

Chebyshev polynomials of the second kind Uj(t), t ∈ [−1, 1], Luke [Luke (1969)] have
the following trigonometric definition:

Uj(t) =
sin(j + 1) θ

sin θ
, t = cos θ.

These polynomials may be generated with the aid of the recurrence relation:

Uj(t) = 2 t Uj−1(t)− Uj−2(t), j ≥ 2, U0(t) = 1, U1(t) = 2 t.

Uj(t), j ≥ 0 are orthogonal on [−1, 1], in the sense that
1∫
−1

√
1− t2 Ui(t)Uj(t) dt =

{π
2
, i = j,

0, i 6= j.
(1)

Several properties and relations concerned with Uj(x) can be found in Mason et al. [Mason
and Handscomb (2003).
Let U∗j (t) be the shifted Chebyshev polynomials of the second kind defined in [0, 1] by
U∗j (t) = Uj(2t− 1). They may be generated with the aid of the recurrence relation:

U∗j (t) = 2 (2 t− 1)U∗j−1(t)− U∗j−2(t), j ≥ 2, U∗0 (t) = 1, U∗1 (t) = 2 (2 t− 1). (2)

Of the useful formulas of U∗j (t) are its analytic formula and its inversion which can
be deduced as special cases of the analytic and inversion formulas of the shifted Jacobi
polynomials Rainville [Rainville (1960)]. The analytic formula is given explicitly by:

U∗j (x) =

j∑
r=0

(−1)j+r 22r (j + r + 1)!

(j − r)! (2r + 1)!
xr, j ≥ 0, (3)
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and its inversion formula is given explicitly by:

xr =
4 Γ
(

3
2 + r

)
√
π

r∑
p=0

r! (p+ 1)!

(r − p)! p! (r + p+ 2)!
U∗p (x), r ≥ 0. (4)

The orthogonality relation of U∗j (t), j ≥ 0 is given by

1∫
0

√
t− t2 U∗i (t)U∗j (t) dt =

{π
8
, i = j,

0, i 6= j.
(5)

2.2 Some definitions and properties of fractional calculus

In the following, we state some elementary definitions and relations of the fractional
calculus [Sabatier, Agrawal and Machado (2007); Oldham and Spanier (1974)].

Definition 1. The Riemann-Liouville fractional integral operator 0I
ν
t of order ν on the

usual Lebesgue space L1[0, 1] is defined as: for all t ∈ (0, 1)

(0I
ν
t f)(t) =

 1
Γ(ν)

∫ t

0
(t− τ)ν−1 f(τ) dτ, ν > 0,

f(t), ν = 0.

(6)

Definition 2. The left side Riemann-Liouville fractional derivative of order ν > 0 is
defined by

(Dν
∗f)(t) =

(
d

dt

)n
(0I

n−ν
t f)(t), n− 1 ≤ ν < n, n ∈ N. (7)

Definition 3. The fractional differential operator in Caputo sense is defined as

(Dνf)(t) =
1

Γ(n− ν)

∫ t

0
(t− τ)n−ν−1 f (n)(τ) dτ, ν > 0, t > 0, (8)

where n− 1 ≤ ν < n, n ∈ N.

The following properties are fulfilled by the operator Dν for n− 1 ≤ ν < n,

(DνIνf)(t) = f(t),

(IνDνf)(t) = f(t)−
n−1∑
k=0

f (k)(0+)

k!
(t− a)k, t > 0,

Dν tk =
Γ(k + 1)

Γ(k + 1− ν)
tk−ν , k ∈ N, k ≥ dνe, (9)

where dνe is the smallest integer greater than or equal to ν.
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3 Fractional derivatives of shifted Chebyshev polynomials of the second kind in terms
of their original polynomials

In this section, we aim to establish a new formula which expresses the fractional derivatives
of shifted Chebyshev polynomials of the second kind in terms of their original polynomials.
We show that the derived formula generalizes the well-known formula of the integer
derivatives of the shifted Chebyshev polynomials of the second kind.
Recall the definition of the generalized hypergeometric function

pFq

(
f1, f2 . . . , fp
g1, g2 . . . , gq

∣∣∣∣x) =
∞∑
`=0

(f1)` (f2)` . . . (fp)`
(g1)` (g2)` . . . (gq)`

x`

`!
,

where f1, f2, . . . , fp, g1, g2, . . . , gq, are complex or real parameters, with gi 6= 0, for all
1 ≤ i ≤ q.
The regularized hypergeometric function pF̃q is defined as

pF̃q

(
f1, f2 . . . , fp
g1, g2 . . . , gq

∣∣∣∣x) =
1

Γ(g1) Γ(g2) · · ·Γ(gq)
pFq

(
f1, f2 . . . , fp
g1, g2 . . . , gq

∣∣∣∣x) .
The following lemma which gives a transformation between two certain types of
hypergeometric functions is useful in the derivation of our desired fractional derivatives
formula.

Lemma 1. For all positive integers j, p, n, and j ≥ p + n, the following transformation
formula holds

4F̃3

(
1,−j + n, 2 + j + n, 3

2
3
2 + n, 1− p, 3 + p

∣∣∣∣ 1) =

(
3
2

)
p

(−j + n) p(2 + j + n)p

(2p+ 2)! Γ
(

3
2 + p+ n

) ×

3F2

(
−j + p+ n, 3

2 + p, 2 + j + p+ n
3 + 2p, 3

2 + p+ n

∣∣∣∣ 1) .
(10)

Proof. The terminating hypergeometric series in the left hand side of (10) is given by

4F̃3

(
1,−j + n, 2 + j + n, 3

2
3
2 + n, 1− p, 3 + p

∣∣∣∣ 1) =

j−n∑
`=p

(
3
2

)
`
(−j + n)`(2 + j + n)`

(`− p)! (p+ `+ 2)! Γ
(

3
2 + `+ n

) . (11)
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Now, performing some computations on the right hand side of (11) enables one to write

4F̃3

(
1,−j + n, 2 + j + n, 3

2
3
2 + n, 1− p, 3 + p

∣∣∣∣ 1) =

j−n−p∑
`=0

(
3
2

)
p+`

(−j + n)p+`(2 + j + n)p+`

`! (2p+ `+ 2)! Γ
(

3
2 + p+ n+ `

)
=

(
3
2

)
p

(−j + n)p (2 + j + n)p

(2p+ 2)! Γ
(

3
2 + p+ n

) ×

j−n−p∑
`=0

(
3
2 + p

)
`
(−j + p+ n)` (2 + j + p+ n)`

`! (3 + 2p)`
(

3
2 + p+ n

)
`

=

(
3
2

)
p

(−j + n) p(2 + j + n)p

(2p+ 2)! Γ
(

3
2 + p+ n

) ×

3F2

(
−j + p+ n, 3

2 + p, 2 + j + p+ n
3 + 2p, 3

2 + p+ n

∣∣∣∣ 1) .
The proof of Lemma 1 is now complete.

Theorem 1. The fractional derivatives of the shifted Chebyshev polynomials of the second
kind can be approximated in terms of their original polynomials by the following formula:

DθU∗j (t) '
2 (−1)j+n (j + n+ 1)! Γ

(
3
2 + n− θ

)
(j − n)!

×

N1∑
p=0

(p+ 1) 4F̃3

(
1,−j + n, 2 + j + n, 3

2 + n− θ
3
2 + n, 1 + n− p− θ, 3 + n+ p− θ

∣∣∣∣ 1) U∗p (t),

(12)

where N1 is a sufficiently large positive number, and n = dθe .

Proof. Based on the power form representation of U∗j (t) in (3) together with relation (9)
yield

DθU∗j (t) =
1

2

√
π

j∑
`=dθe

(−1)j+`(j + `+ 1)!

(j − `)!Γ
(

3
2 + `

)
Γ(1 + `− θ)

x`−θ. (13)

Now, based on the inversion formula of U∗j (t) in (4), and for sufficiently large positive
number N1, we can approximate x`−θ in the form

x`−θ '
4Γ
(
`− θ + 3

2

)
√
π

N1∑
p=0

(1 + p)!(`− θ)!
p!(`− p− θ)!(2 + `+ p− θ)!

U∗p (t). (14)
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Inserting (14) into (13) leads to the following approximation for DθU∗j (t)

DθU∗j (t) ' 1

2

√
π

j∑
`=dθe

(−1)j+` (j + `+ 1)! 21−2`+2θ

(j − `)! Γ
(

3
2 + `

)
Γ(1 + `− θ)

×
N1∑
p=0

(1 + p) Γ(2 + 2`− 2θ)

Γ(1− p+ `− θ) Γ(3 + p+ `− θ)
U∗p (t).

(15)

After expanding the right hand side of relation (15) and rearranging the terms, we get

DθU∗j (t) ' 2

N1∑
s=0

(s+ 1)

×
j−n∑
p=0

(−1)j+p+n (j + p+ n+ 1)! Γ
(

3
2 + p+ n− θ

)
(j − p− n)! Γ

(
3
2 + p+ n

)
Γ(1 + p+ n− s− θ) Γ(3 + p+ n+ s− θ)

U∗s (t).

(16)

The last relation can be written in terms of hypergeometric form as

DθU∗j (t) '
2(−1)j+n (j + n+ 1)! Γ

(
3
2 + n− θ

)
(j − n)!

×
N1∑
p=0

(p+ 1) 4F̃3

(
1,−j + n, 2 + j + n, 3

2 + n− θ
3
2 + n, 1 + n− p− θ, 3 + n+ p− θ

∣∣∣∣ 1) U∗p (t).

The proof of Theorem 1 is now complete.

Corollary 1. Let n be any positive integer. The nth-derivative of the shifted Chebyshev
polynomials of the second kind has the following representation in terms of their original
polynomials

DnU∗j (t) = 22n
j−n∑
p=0

(j+p+n) even

(1 + p)(n) 1
2

(j−p−n)(
1
2(j − p− n)

)
!
(

1
2(2 + j + p+ n)

)
1−n

U∗p (t). (17)

Proof. If we set θ = n in relation (12), then it turns into

DnU∗j (t) =
(−1)j+n

√
π(j + n+ 1)!

(j − n)!

j−n∑
p=0

(1 + p)×

4F̃3

(
1,−j + n, 2 + j + n, 3

2
3
2 + n, 1− p, 3 + p

∣∣∣∣ 1)U∗p (x).

(18)

The transformation stated in Lemma 1 enables one to express the nth-derivative in the
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following expression

DnU∗j (t) =
(−1)j+n

√
π(1 + j + n)!

(j − n)!

j−n∑
p=0

(1 + p)!
(

3
2

)
p

(−j + n)p(2 + j + n)p

p!(2 + 2p)!Γ
(

3
2 + n+ p

) ×

3F2

(
−j + p+ n, 3

2 + p, 2 + j + p+ n
3 + 2p, 3

2 + p+ n

∣∣∣∣ 1) U∗p (t).

(19)

The 3F2(1) in relation (19) can be reduced with the aid of Watson’s identity to give

3F2

(
−j + p+ n, 3

2 + p, 2 + j + p+ n
3 + 2p, 3

2 + p+ n

∣∣∣∣ 1) =
Γ
(

1
2(1 + j − p− n)

)
(n) 1

2
(j−p−n)

√
π(2 + p) 1

2
(j−p−n)

(
3
2 + p+ n

)
1
2

(j−p−n)

, (j + p+ n) even,

0, (j + p+ n) odd,

(20)

and therefore, we get

DnU∗j (t) = 22n
j−n∑
p=0

(j+p+n) even

(1 + p)(n) 1
2

(j−p−n)(
1
2(j − p− n)

)
!
(

1
2(2 + j + p+ n)

)
1−n

U∗p (t).

Remark 1. Relation (17) can be written in the following alternative form

DnU∗j (t) =

j−n∑
p=0

Bp,j,n U
∗
p (t), (21)

where

Bp,j,n =
22n (1 + p)(n) 1

2
(j−p−n) ξp,j,n(

1
2(j − p− n)

)
!
(

1
2(2 + j + p+ n)

)
1−n

,

ξp,j,n is given by

ξp,j,n =

{
1, (p+ j + n) even,
0, otherwise.

(22)

4 Spectral solution of Riccati equation
In this section, we are confined with finding a semi-analytic solution for the fractional-order
Riccati differential equation with polynomial coefficients. An explicit second kind
Chebyshev tau method (ES2CTM) is developed. Before proceeding in our algorithm, the
following two lemmas are needed in the sequel.
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Lemma 2. For all nonnegative integers k and r, the following linearization formula holds
for shifted Chebyshev polynomials of the second kind [Askey (1975)].

U∗k (t)U∗r (t) =

min(k,r)∑
j=0

U∗k+r−2j(t). (23)

Lemma 3. Let i and m be any two nonnegative integers. The moments formula for the
shifted Chebyshev polynomials of the second kind is given explicitly by

ti U∗m(t) =
1

22 i

i+m∑
`=i−m

(
2i

m+ i− `

)
U∗` (t). (24)

Proof. Lemma 3 can be proved based on making use of the recurrence relation (2) via
induction after some lengthy straightforward steps.

Now, consider the following fractional Riccati differential equation with polynomial
coefficients which generalizes the model considered in Raja et al. [Raja, Manzar and Samar
(2015); Yüzbaşı (2013); Ezz-Eldien, Machado, Wang et al. (2019); Keshavarz, Ordokhani
and Razzaghi (2014); Abd-Elhameed and Youssri (2014a)]:

Dθy(t) +

(
P∑
i=0

pi t
i

)
y(t) +

(
Q∑
i=0

qi t
i

)
y2(t) = S(t), t ∈ (0, 1), (25)

subject to the initial condition

y(0) = y0, (26)

where 0 < θ ≤ 1 and S(t) is a continuous known source function. We assume an
approximate solution of the form

y(t) ≈ yN (t) =
N∑
k=0

ak U
∗
k (t).

The residual of Eq. (25) is given by

R(t) =

N∑
k=0

akD
θU∗k (t) +

N∑
k=0

P∑
i=0

pi ak t
i U∗k (t) +

N∑
k,r=0

Q∑
i=0

ak arqi t
i U∗k (t)U∗r (t)

−
N∑
i=0

si U
∗
i (t),

(27)

where si are the Fourier second-kind Chebyshev coefficients of S(t). Now Theorem 1
enables one to write the expression

DθU∗k (t) =

N1∑
i=0

γi,k,θ U
∗
i (t), (28)
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where γi,k,θ is given by

γi,k,θ =
2 (−1)k+n (i+ 1) (1 + k + n)! Γ

(
3
2 + n− θ

)
(k − n)!

×F̃3

(
1,−k + n, 2 + k + n, 3

2 + n− θ
3
2 + n, 1 + n− i− θ, 3 + n+ i− θ

∣∣∣∣ 1) . (29)

In virtue of (28) and the linearization formula (23), the residual in (27) can be transformed
into

R(t) =
N∑
k=0

N1∑
i=0

γi,k,θ ak U
∗
i (t) +

N∑
k=0

P∑
i=0

pi ak t
i U∗k (t)

+

N∑
k,r=0

Q∑
i=0

min(k,r)∑
j=0

ak ar qi t
i U∗k+r−2j(t)−

N∑
i=0

si U
∗
i (t).

(30)

With the aid of Lemma 3, the moments formula of U∗m(t) can be written in the form

ti U∗m(t) =
i+m∑
`=i−m

µi,m,` U
∗
` (t),

and

µi,m,` =
1

22 i

(
2i

m+ i− `

)
.

Now, the residual in Eq. (30) takes the following form

R(t) =
N∑
k=0

N1∑
i=0

ak γi,k,θ U
∗
i (t) +

N∑
k=0

P∑
i=0

i+k∑
`=i−k

ak pi µi,k,` U
∗
` (t)

+
N∑

k,r=0

Q∑
i=0

min(k,r)∑
j=0

i+k+r−2j∑
`=i−k−r+2j

ak ar qi µi,k+r−2j,` U
∗
` (t)−

N∑
i=0

si U
∗
i (t).

(31)

The application of the typical tau method yields∫ 1

0

√
t− t2R(t)U∗m(t) dt = 0, m = 0, . . . N − 1.

Thanks to the orthogonality relation (5), relation (31) can be turned into

N∑
k=0

N1∑
i=0

ak γi,k,θ δi,m +
N∑
k=0

P∑
i=0

i+k∑
`=i−k

ak pi µi,k,` δ`,m

+
N∑

k,r=0

Q∑
i=0

min(k,r)∑
j=0

i+k+r−2j∑
`=i−k−r+2j

ak ar qi µi,k+r−2j,` δ`,m =
N∑
i=0

si δi,m,

(32)
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and δi,j is the Kronecker delta function.
In addition, the initial condition (26), yields
N∑
k=0

(−1)k(k + 1)ak = y0. (33)

Finally Eqs. (32)-(33) generate an algebraic system in the unknown expansion coefficients
ak of quadratic nonlinearity, we solve this system with Newton’s iterative method
"FindRoot" package in Mathematica 12, with the initial guess ak = 10−k, hence the
approximate semi-analytic solution can be obtained.

5 Investigation of the convergence and error analysis
Note 1. By writing ak . bk, we mean that there exists a positive generic constant C such
that ak ≤ C bk
Lemma 4. [Mason and Handscomb (2003)] For all k ≥ 0, we have the following estimate

|U∗k (t)| ≤ k + 1.

Lemma 5. For all k ≥ 0, we have the following estimate

|Dθ U∗k (t)| . kθ+1.

Proof.

DθU∗j (t) =

j∑
r=0

(−1)j+r 22r (j + r + 1)! r!

(j − r)! (2r + 1)! Γ(r + 1− θ)
tr−θ, (34)

using the Legendre duplication formula and noting that 0 < t < 1, we get the desired result.

Theorem 2. If y(t) ∈ Cn[0, 1] for some n > 3, then we have the following estimates:

|ak| .
1

kn
, for all k > n, (35)

|y(t)− yN (t)| . 1

Nn−2
for all k > n. (36)

Proof. Following similar procedures to those followed in Abd-Elhameed et al.
[Abd-Elhameed and Youssri (2014b)], we get

ai =
8

π

∫ 1

0

√
t− t2 y(t)U∗i (t) dt. (37)

If we substitute by 2t− 1 = cos γ in (37), then we get

ai =
2

π

∫ π

0
y

(
1 + cos γ

2

)
sin γ sin(i+ 1)γ dγ,



1040 CMES, vol.121, no.3, pp.1029-1049, 2019

which gives after integration by parts n times

ai =
1

8π

∫ π

0
y(n)

(
1 + cos γ

2

)
Ωi(γ) dγ,

where Ωi(γ) is a trigonometric polynomial in cos γ, sin γ. Now noting that | cos γ| ≤
1, | sin γ| ≤ 1 and after some manipulations we get the desired result. For the second part

of the theorem, just noting the well known inequality:
∞∑

k=N+1

f(k) 6
∫ ∞
N

f(x) dx, where

f(k) = ak, we directly get the result.
In the next theorem, we find an upper estimate for the following global error

RN (t) = DθyN (t) +

(
P∑
i=0

pi t
i

)
yN (t) +

(
Q∑
i=0

qi t
i

)
y2
N (t)− S(t).

Theorem 3. If y(t) satisfies the hypothesis of Theorem 2 and |y(t)| ≤M , for some positive

constantM , let P̃ =

P∑
i=0

|pi|, Q̃ =

Q∑
i=0

|qi| are positive numbers, then we have the following

global error estimates

|RN (t)| . 1

Nn−θ−1
+
P̃ + 2M Q̃

Nn−2
.

Proof. The approximate solution yN (t) satisfies

DθyN (t) +

(
P∑
i=0

pi t
i

)
yN (t) +

(
Q∑
i=0

qi t
i

)
y2
N (t) ≈ S(t).

From Eq. (25), we have

RN (t) = Dθ(y(t)− yN (t)) +

(
P∑
i=0

pi t
i

)
(y(t)− yN (t)) +

(
Q∑
i=0

qi t
i

)
(y2(t)− y2

N (t)).

Now

|RN (t)| ≤ |Dθ(y(t)− yN (t))|+ P̃ |y(t)− yN (t)|+ Q̃|y2(t)− y2
N (t)|

≤ |
∞∑

k=N+1

|akDθU∗k (t)|+ P̃ /Nn−2 + 2M Q̃/Nn−2.

With the aid of the two Lemmas 4, 5, and by the properties of the Riemann-zeta function,
we have

|RN (t)| . 1/Nn−θ−1 + P̃ /Nn−2 + 2M Q̃/Nn−2,

which completes the proof of the theorem.
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6 Numerical experiments
In this section, we illustrate the applicability, efficiency and accuracy of the presented
algorithm by four numerical examples, we compare our results with those obtained using
some other techniques.

Example 1. Consider the following nonlinear fractional Ricatti equation [Kashkari and
Syam (2016); Bota and Căruntu (2017); Ezz-Eldien, Machado, Wang et al. (2019)]

Dθy(t) + y(t) + y2(t) = t
3
2

(
8

3Γ(0.5)
+ t

1
2 + t

5
2

)
, t ∈ [0, 1],

y(0) = 0,

(38)

If θ = 1
2 , the exact smooth solution of Eq. (38) is given by y(t) = t2. We handle this

problem in two cases:

• Case 1: If θ = 1
2 , we have an exact analytic solution.

• Case 2: If θ ∈ (0, 1), θ 6= 1
2 . there is no exact solution.

For case 1, we apply our algorithm with N = 4, and solve the algebraic system in (32)-(33)
to get

a0 = 0.3125, a1 = 0.25, a2 = 0.0625, a3 = a4 = 0,

and consequently, the approximate solution y4(x) can be explicitly calculated

y4(t) =0.3125 + 0.25(−2 + 4t) + 0.0625(3− 16t+ 16t2)

+ 0(−4 + 40t− 96t2 + 64t3) + 0(5− 80t+ 336t2 − 512t3 + 256t4) = t2,

which is the exact solution.
For case 2, in Tab. 1, due to the nonavailability of the exact solution for θ < 1, we list the
maximum residual error

εN = max
0≤t≤1

∣∣∣∣DθyN (t) + yN (t) + y2
N (t)− t

3
2

(
8

3Γ(0.5)
+ t

1
2 + t

5
2

)∣∣∣∣ ,
for the case N = 4 and for different values of θ.

Table 1: The maximum residual errors for Example 1
θ 0.1 0.3 0.5 0.7 0.9

εN 2.01E−5 3.58E−6 0.00 2.39E−7 1.17E−7

Example 2. Consider the following nonlinear fractional Ricatti equation with variable
coefficients

Dθy(t) + t (1 + y(t))2 = t(t+ 2)2 +
2
√
t√
π
, t ∈ [0, 1],

y(0) = 1,

(39)

if θ = 1
2 , the exact smooth solution of Eq. (39) is y(t) = 1 + t. We handle this problem in

two cases:
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• Case 1: If θ = 1
2 , we have an exact analytic solution.

• Case 2: If θ ∈ (0, 1), θ 6= 1
2 . there is no exact solution.

For case 1, we apply our algorithm with N = 3, then we obtain the following system of
equations

a0 − 2a1 + 3a2 − 4a3 = 1,

8(420a1 − 400a2 + 616a3 − 105)

1575
√
π

+
π

256

(
16a2

0 + 16(a1 + 2)a0 + 16a2
1 + 16a2

2 + 16a2
3 + 16a1(a2 + 1) + 16a2a3 − 95

)
= 0,

16(396a1 + 1232a2 − 648a3 − 99)

10395
√
π

+
π

256

(
8a2

0 + 16(2a1 + a2 + 1)a0

+16a2
1 + 16a2

2 + 16a2
3 + 16a2 + 32a2a3 + 16a1(2a2 + a3 + 2)− 63

)
= 0,

8(−572a1 + 5616a2 + 11176a3 + 143)

45045
√
π

+
π

256

(
16a2

1 + 16(a0 + 2a2 + 2a3 + 1)a1 + 16a2
2 + 16a2

3

+16a0a3 + 16a3 + 32a2(a0 + a3 + 1)− 11) = 0.

(40)

The system in (40) can be solved to give

a0 = 1.5, a1 = 0.25, a2 = a3 = 0,

and consequently

y3(t) = 1.5 + 0.25(−2 + 4t) + (3− 16t+ 16t2) + 0(−4 + 40t− 96t2 + 64t3) = 1 + t,

which is the exact solution.
For case 2, in Tab. 2, due to the nonavailability of the exact solution for θ < 1, we list the
maximum residual error

εN = max
0≤t≤1

∣∣∣∣DθyN (t) + t (1 + yN (t))2 − t(t+ 2)2 − 2
√
t√
π

∣∣∣∣ ,
for the case N = 3 and for different values of θ.

Table 2: The maximum residual errors for Example 2
θ 0.1 0.3 0.5 0.7 0.9

εN 3.24E−4 5.27E−5 0.00 7.25E−6 2.16E−6

Example 3. Consider the following nonlinear fractional Ricatti equation [Yüzbaşı (2013);
Raja, Manzar and Samar (2015); Ezz-Eldien, Machado, Wang et al. (2019); Keshavarz,
Ordokhani and Razzaghi (2014); Abd-Elhameed and Youssri (2014a)]

Dθy(t) + y2(t) = 1, t ∈ [0, 1], 0 < θ ≤ 1,

y(0) = 0,
(41)
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Figure 1: Different solutions of Example 3

when θ = 1, the exact smooth solution of (41) is y(t) = tanh t. Many authors handles Eq.
(41). For example, Yuzbasi in [Yüzbaşı (2013)] applied the collocation method based on
Bernstein polynomials, Raja et al. [Raja, Manzar and Samar (2015)] adopted the sequential
quadratic programming method and Ezz-Eldien et al. [Ezz-Eldien, Machado, Wang et al.
(2019)] used the first-kind Chebyshev polynomials. We compare our method, namely,
ES2CTM with some previous mentioned methods for the case θ = 1 in Tab. 3. In Fig.
1, we analyze the effect of θ on the behavior of the solution using the "ListPlot" command
from Mathematica, we plot yN (i/20), 0 ≤ i ≤ 20 for different values of θ.

Table 3: Comparison between different algorithms for Example 3 for θ = 2
x Exact [Yüzbaşı (2013)] [Raja, Manzar and Samar (2015)] [Ezz-Eldien, Machado, Wang et al. (2019)] ES2CTM N = 12

0.0 0.00000000000 0.000000000000 0.0000000011 0.000000000000 0.000000000000
0.2 0.19737532022 0.197375320493 0.1973918880 0.19737532017 0.19737532024
0.4 0.37994896226 0.379948962506 0.3799632287 0.379948962207 0.37994896229
0.6 0.53704956700 0.537049567214 0.5370622335 0.53704956701 0.53704956714
0.8 0.66403677027 0.664036770562 0.6640456511 0.66403677030 0.66403677024
1.0 0.76159415596 0.761594224400 0.7616019763 0.76159415595 0.76159415594

Example 4. Consider the following nonlinear fractional Ricatti equation [Yüzbaşı (2013);
Li, Sun, Zheng et al. (2014); Raja, Manzar and Samar (2015); Ezz-Eldien, Machado, Wang
et al. (2019); Keshavarz, Ordokhani and Razzaghi (2014); Odetunde and Taiwo (2014);
Abd-Elhameed and Youssri (2014a)]

Dθy(t)− y2(t) = 1, t ∈ [0, 1], 0 < θ ≤ 1,

y(0) = 0,
(42)

when θ = 1, the exact smooth solution of (42) is y(t) = tan t. Many authors handles
Eq. (42), for example, Li et al. [Li, Sun, Zheng et al. (2014)] used the Haar wavelet
operational matrix method, Odetunde and Taiwo in Odetunde et al. [Odetunde and Taiwo
(2014)] applied a decomposition algorithm and Ezz-Eldien et al. [Ezz-Eldien, Machado,
Wang et al. (2019)] used the first-kind Chebyshev polynomials. We compare our method
(ES2CTM) with the previous mentioned methods for the case θ = 1 in Tab. 4. In Fig. 2, we
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Figure 2: Different solutions of Example 4

analyze the effect of θ on the behavior of the solution using the "ListPlot" command from
Mathematica, we plot yN (i/20), 0 ≤ i ≤ 20 for different values of θ.

Table 4: Comparison between different algorithms for Example 4 for θ = 1
x Exact [Li, Sun, Zheng et al. (2014)] [Odetunde and Taiwo (2014)] [Ezz-Eldien, Machado, Wang et al. (2019)] ESKCM N = 12

0.0 0.00000000000 0.0000000000 0.00000000000 0.00000000000
0.1 0.10033467208 0.100342 0.1003346713 0.1003346714 0.10033467208
0.2 0.20271003550 0.202726 0.2027099297 0.2027100349 0.20271003550
0.3 0.30933624961 0.309372 0.3093343442 0.3093362509 0.30933624961
0.4 0.42279321873 0.422832 0.4227777155 0.4227932186 0.42279321873
0.5 0.54630248984 0.546363 0.5462212762 0.5463024891 0.54630248984
0.6 0.68413680834 0.684251 0.6838056920 0.6841368110 0.68413680834
0.7 0.84228838046 0.842411 0.8411449022 0.8422883779 0.84228838046
0.8 1.02963855705 1.029849 1.0261001110 1.0296385599 1.02963855705
0.9 1.26015821755 1.260573 1.2499664940 1.2601582184 1.26015821754
1.0 1.55740772465 1.557938 1.5293009690 1.5574077258 1.55740772469

Example 5. Consider the following nonlinear fractional Ricatti equation with variable
coefficients

Dθy(t)− t2 y(t) + t y2(t) =
2
√
t√
π
, t ∈ [0, 1], 0 < θ ≤ 1,

y(0) = 0,

(43)

with the exact smooth solution y(t) = t. We apply our algorithm with N = 1, to get the
following system of algebraic equations:
8 (4a1 − 1)

15
√
π

+
1

128
π
(
8a2

0 + (8a1 − 5) a0 + 4a1 (2a1 − 1)
)

= 0,

a0 − 2a1 = 0,

which yields

a0 =
1

2
, a1 =

1

4
,

and consequently

y1(t) =
1

4
(4t− 2) +

1

2
= t,
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which is the exact solution.

Example 6. Consider the following nonlinear fractional Ricatti equation [Singh and
Srivastava (2019)]

Dθy(t)− 1− 2 y(t) + y2(t) = 0, t ∈ [0, 1], 0 < θ ≤ 1,

y(0) = 0.
(44)

The exact smooth solution of (44) when θ = 1 is

y(t) = 1 +
√

2 tanh

(
√

2 t+
1

2
ln

(√
2− 1√
2 + 1

))
.

We apply our algorithm with N = 15, in Tab. 5, we compare between the best errors of
Eq. (44) which resulted from our present method and the method proposed in singh et al.
[Singh and Srivastava (2019)] for the case θ = 1, in Tab. 6, due to the nonavailability of the
exact solution for θ < 1, we list the maximum residual error

εN = max
0≤t≤1

|DθyN (t)− 1− 2 yN (t) + y2
N (t)|,

for the case N = 15 and for different values of θ.

Table 5: Comparison between absolute errors for Example 6 for θ = 1

t [Singh and Srivastava (2019)] Present Method
0.1 4.57E−9 2.22E−15

0.2 9.74E−10 2.67E−15

0.3 3.71E−9 1.01E−14

0.4 1.29E−9 2.34E−14

0.5 1.93E−9 3.27E−14

0.6 2.74E−9 2.24E−14

0.7 4.32E−9 4.68E−14

0.8 2.43E−9 7.25E−14

0.9 3.59E−10 3.67E−14

1.0 7.01E−9 2.38E−14

Table 6: The maximum residual errors for Example 6
θ 0.1 0.3 0.5 0.7 0.9

εN 4.24E−16 7.22E−16 5.27E−16 3.24E−17 4.28E−18

7 Concluding remarks
Herein, a new formula for approximating the fractional-order derivative of the second-kind
Chebyshev polynomials was derived and proved. This formula of course generalizes the
well-known integer derivatives formula. The fractional derivatives formula was utilized to
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analyze explicit second-kind Chebyshev algorithm for solving the fractional-order Riccati
differential equation. We do believe that the derived fractional formula in this paper is novel
and it can be employed for solving some other types of fractional differential equations.

Acknowledgement: The authors would like to thank the referees for carefully reading the
paper and also for their constructive and valuable comments which have improved the paper.
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