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Abstract: Combining adaptive theory with an advanced second-order sliding mode control 
algorithm, a roll stabilization controller with aerodynamic disturbance and actuator failure 
consideration for spinning flight vehicles is proposed in this paper. The presented controller 
is summarized as an “observer-controller” system. More specifically, an adaptive second-
order sliding mode observer is presented to select the proper design parameters and 
estimate the knowledge of aerodynamic disturbance and actuator failure, while the 
proposed roll stabilization control scheme can drive both roll angle and rotation rate 
smoothly converge to the desired value. Theoretical analysis and numerical simulation 
results demonstrate the effectiveness of the proposed controller. 
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1 Introduction 
In modern warfare, the precision strike is still a challenge for guided spinning flight 
vehicles. The nonlinearities and uncertainties of the aerodynamic disturbance in Clare et 
al. [Clare, Ingram and Nicolaides (1970)] caused by the high angle of attack maneuver 
may affect the roll stabilization, reduce the impact accuracy and the shooting range, even 
lead to a catastrophic flight. To enhance flight performance, it is still a challenge to 
realize roll stabilization. 
Based on linear control theory, traditional roll stabilization controllers in Nesline et al. 
[Nesline and Zarchan (1984); Mracek and Ridgely (2005)] are designed by ignoring the 
aerodynamic disturbance. These controllers can guarantee stability and performance at a 
small angle of attack, but the performances of these controllers are quite difficult to be 
ensured since the aerodynamic coefficient changes rapidly at a high angle of attack, 
according to the work in Ericsson [Ericsson (1985)]. 
Because of the inherent strong robustness against external disturbances and uncertainties, 
sliding mode control (SMC) in Levant et al. [Levant (2001); Shima, Idan and Golan 
(2006)] is a powerful tool for roll stabilization control. Then second-order sliding mode 
control (STA) in Shtessel et al. [Shtessel, Shkolnikov and Levant (2009); Trivedi, 
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Bandyopadhyay, Chaudhuri et al. (2015)] is adopted to design autopilot to guarantee roll 
stabilization. STA generates the continuous control function that drives the sliding 
variable and its derivative to zero in finite time in the presence of the smoothly matched 
disturbances with bounded gradient, but the boundary of the gradient should be known in 
advance. However, due to physical limitations, aerodynamic parameters are difficult to 
measure in real-time. 
All of the above methods and theories pay attention to the aerodynamic disturbance, and 
the real manipulation disturbances should also be taken into account. As a kind of 
common manipulation disturbance, actuator failures may cause severe performance 
deterioration of control systems, and even lead to catastrophic accidents. To 
accommodate actuator failures, fault diagnosis-based approaches in Wu et al. [Wu, Zhang 
and Zhou (2000); Cao, Guo and Wen (2011)], learning-based approaches in Polycarpou  
[Polycarpou (2001)] and sliding mode control-based approaches in Corradini et al. 
[Corradini and Orlando (2007)] have been proposed. For actuator stuck faults, an 
adaptive fault-tolerant control scheme by introducing an iterative learning observer has 
also been proposed in Chen et al. [Chen and Jiang (2005)]. However, to design the above 
approaches, the knowledge of lower and upper bounds of the actuator efficiency factor is 
needed as well. 
Inspired by the above work, a robust roll stabilization controller is proposed with 
aerodynamic disturbance and actuator failure consideration is proposed in this paper.  
The main contributions of this paper can be concluded as follows: (1) an “observer-
controller” system in which an adaptive second-order sliding mode observer is presented 
to select the proper design parameter and estimate the knowledge of aerodynamic 
disturbance and actuator failure; (2) the proposed roll stabilization control scheme drives 
both roll angle and rotation rate smoothly to converge to the desired value.  
The rest of this paper is organized as follows. In Section 2, the kinematics model of 
spinning flight vehicle and actuator failure during the flight phase are introduced. In 
Section 3, an adaptive second-order sliding mode observer and a robust roll stabilization 
controller are declared. Simulation results are provided and analyzed in Section 4. Some 
conclusions are made in the last section.  

2 Problem formulation 
In this section, the kinematics model of spinning flight vehicle and actuator failure during 
the flight phase are presented for the roll stabilization controller design. Moreover, some 
assumptions and lemmas are also considered for further application to facilitate the design. 

2.1 Kinematics model of spinning flight vehicle 
According to Trivedi et al. [Trivedi, Bandyopadhyay, Chaudhuri et al. (2015)], the 
kinematics model of spinning flight vehicle considering aerodynamic disturbance at a 
high angle of attack can be described as follow: 

( )a+ sin 4RR K Clδφ ω φ δ φ= − +    (1) 
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where φ  and δ  denote the roll angle and actuator deflection angle, RRω , Kδ  and aCl  
represent actuator bandwidth, fin effectiveness and aerodynamic coefficient. The last 
term, ( )a sin 4Cl φ , is an aerodynamic disturbance, which is usually ignored by assuming 
a small φ . Since the coefficient increases rapidly at a high angle of attack, small 
variations in φ  can cause large disturbances [Kang, Kim, Won et al. (2008)].  

In this study, it is assumed that the signals, φ , φ  and δ  can be measured. Let dφ  and dφ  
denote the desired roll angle and rotation rate, 1x  and 2x  represent the roll angle error and 
rate error, which are defined by 1 dx φ φ= −  and 2 dx φ φ= −  , respectively, then the system 
(1) can be rewritten as 

1 2

2 2RR

x x
x x Kδω δ
=
= − + + ∆





   (2) 

where ∆  denotes the disturbance term, and ( )a 1sin 4Cl x∆ = . 

Owing to the physical limits, the disturbance term ∆  is bounded. The objective of this 
study can be described as designing actuator deflection angles command δ  for the 
system (2) aiming to drive the roll angle and its rate to the desired value. 

2.2 Actuator faults 
Owing to the inherent properties, time delay, sensor failure and other reasons, actuator 
failure, occurs frequently and may result in undesirable performance during the control 
phase. According to the engineering experience, actuator failure usually shows up as four 
forms: saturation, nonlinearity, discontinuous and indeterminacy. Based on control theory 
and control system, and taking actuator faults into account, the total actuator deflection 
can be formulated as the following form [Li and Yang (2012)]: 

( ) ( ) ( )st t tδ ρδ σδ= +    (3) 

where ρ  denotes the unknown bounded time-varying actuator efficiency and sσδ  
represents the bounded time-varying stuck fault. To cope with the system (2) in the 
presence of the actuator failure as Eq. (3), a new actuator failure consideration system is 
defined as: 

( ) ( )
1 2

2 2RR s

x x
x x K t K tδ δω ρδ σδ
=

= − + + + ∆





   (4) 

This completes the control system in the presence of actuator failure during the roll 
stabilization phase. 
Owing to the physical limits, one can see that the dumped disturbance ∆  and its first-
order time derivative is continuous and bounded but unknown, i.e., there exist two 
positive constant max∆  and max∆  satisfied max∆ < ∆  and max∆ < ∆  , respectively. 
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2.3 Preliminaries 
Notation 1. Throughout this paper, following notation will be used. For any given vector 

[ ]1 2, , , T

nx x x= x , its absolute value is denoted as 1 2, , ,
T

nx x x =  x , its vectorial 

time derivative is denoted as [ ]1 2, , , T

nx x x=   

x , its reciprocal value is denoted as 
-1 1 1 1

1 2, , ,
T

nx x x− − −=   x , its 2-norm is denoted as T=x x x , its vectorial sign function is 

denoted as ( ) ( ) ( ) ( )1 2sgn sgn ,sgn , ,sgn
T

nx x x=   x , its maximum values are denoted as 

( ) ( ) ( ) ( )( )max max 1 max 2 max, , , ncol x x xλ λ λ λ= x , and its minimum values are denoted as  

( ) ( ) ( ) ( )( )min min 1 min 2 min, , , ncol x x xλ λ λ λ= x . 

Notation 2. For two any given column vector [ ]1 2, , , T

na a a= A  and [ ]1 2, , , T

nb b b= B  
with the same length, in this paper, ( )≥ ≤A B A B  is defined as that every element in A  
is larger (smaller) than or equal to the element in B  with the corresponding position, i.e., 

( )1 1 2 2 1 1 2 2, , , , , ,n n n na b a b a b a b a b a b≥ ≥ ≥ ≤ ≤ ≤  . For an arbitrary column vector 

[ ]1 2, , , T

na a a= A  and any given constant m , ( )m m≥ ≤A A  means that every element 
in A  is larger (smaller) than or equal to m . 
Lemma 1 [Li and Tian (2007)]. Considering the nonlinear system ( ),x f x t= , nx R∈ . 
Assume the existence of a continuous and positive definite function ( )V x , 

( ) ( ) ( )1 2 0V x V x V xθλ λ+ + ≤    (5) 

where 1 2 0λ λ >，  and 0 1θ< <  are constants. ( )0 0x t x= , in which 0t  is the initial time. 
Then, the time of the system states arriving at the equilibrium point T satisfies the 
following inequality: 

( ) ( )11
0

1 2

1 ln 1
1

T V xθλ
λ θ λ

− 
≤ + −  

   (6) 

Lemma 2 (Rayleigh’s inequality). For any function ( ) Tf =x x Px  where n-dimension 
nonsingular matrix P is positive-defined, following inequality holds 

( ) ( ) ( )2 2

min maxfλ λ≤ ≤P x x P x    (7) 

Lemma 3 (LaSalle’s invariance principle). For arbitrary given autonomous system and scalar 
function ( )V x , denote two sets as ( ){ }l x V x lΩ = ≤  and ( ){ }0, l lS x V x x= = ∈Ω ⊂Ω  in 
system state space, respectively. If there is a continuous differentiable scalar function W(x) 
such that: 
(1). There is a properly chosen positive constant 0l  such that 

0l
Ω  is bounded, 
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(2). ( )
0

0 .lW x x≤ ∀ ∈Ω，  

Then for the arbitrary initial state ( )
0

0 lx ∈Ω , the system trajectory ( )x t  will approach 
the maximum invariable set M in the presence of t →∞ , where M is the union of all of 
the invariable sets in S. 

3 Robust finite time convergent roll stabilization controller 
In this section, an adaptive second-order sliding mode observer is proposed to estimate 
the information of the aerodynamic disturbance and actuator failure while a robust roll 
stabilization controller is presented to drive the roll angle and its rate to the desired value. 

3.1 Adaptive second-order sliding mode observer 
Considering roll stabilization control system (4), motived by the works in He et al. [He 
and Lin (2016)] and Wang et al. [Wang, Ji, Shi et al. (2017)], a second-order sliding 
mode observer is proposed as follow: 

( )

( )

1 1/
2 1 2 2 2 2 2

1 2/
2 2 2 2 2

ˆˆ ˆ ˆ

ˆ ˆ ˆ

k
RR

k

x a x x sign x x x K

a x x sign x x

δω δ−

−

= ∆ + − − − +

∆ = − −





 (8) 

where 2x̂  and ∆̂  are the estimations of the 2x  and ∆ , 1a , 2a  and k  are positive constants. 
According to the conclusion of He et al. [He and Lin (2016)], the proposed observer can 
estimate the disturbance ∆  with high precision. However, how to choose 1a  and 2a  is 
still a tough question to cope with. To overcome this problem, we proposed observer (8) 
and came up with an adaptive observer which can adjust the design parameters itself and 
is formulated as: 

( ) ( )

( ) ( )

1 1/
2 1 2 2 2 2 2

1 2/
2 2 2 2 2

ˆˆ ˆ ˆ

ˆ ˆ ˆ

k
RR

k

x a t x x sign x x x K

a t x x sign x x

δω δ−

−

= ∆ + − − − +

∆ = − −





  (9) 

where ( ) ( )1 1a t c L t=  and ( ) ( )2 2a t c L t= . And the adaptive gain is proposed as: 

( ) ( )sgnL t l ε= ⋅ −x    (10) 

where 0m >  is used to regulate the adaptive process, ( ) 0L t >  is defined as an adaptive 
parameter, ε is a small value to ensure that ( )L t  will be bound. 

Proposition 1. Considering the adaptive law Eq. (10), the adaptive parameter ( )L t  is 
globally bounded. 
Proof. At the initial phase of control, ( )L t  will rise gradually and drive the rotation rate 
to converge, when the adaptive law works. When the system state satisfies ε≤x , the 

term ( )sgn ε−x  turns into negative and the adaptive parameter ( )L t  pushes x  to 
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converge into the region ε<x . On the other hand, if ( )L t  is too small to resist the 
external disturbance, the adaptive law Eq. (10) will raise ( )L t  until the force the system 
state converge to the region ε<x . Thus the adaptive parameter ( )L t  is always bound 
and cannot increase to infinity. 
The property of the proposed adaptive law is summarized as the following theorem. 
Theorem 1. Denote 1 2 2ˆe x x= −  and 2

ˆe = ∆ −∆  represent the estimation errors, and 

[ ]1 2, Te e=e . The estimation errors will approach the following region in finite time in the 
presence of Proposition 1. 

( )

( ) ( )1 / 2

max

min

k k
B

Mλ

− −
 ∆

≤   
 

e    (11) 

where 

3/2 3 3/2 2 3/2
1/21 2 1 1

1

2 3/2 1/2
1 1

1 1

,
1 1 2

k kc c L c L c L c Lk kM B
k kc L c L

k k

− − + −   −
= =   − −   −  

  

Proof. See Appendix A.  

Remark 1. For the stage where it follows from 1 0e =  and ˆ 0∆ = , according to Eq. (11) 
and (A.6) that 1 2 0e e= = , which represents the proposed observer will not work or affect 
the control system. 

3.2 Roll stabilization controller design 
Define a sliding manifold as: 

( )3

2 1 1 2 1 1
ds x d x d x sign x= + +    (12) 

The time derivative of s can be expressed as: 

( )

3 1
2 1 2 2 3 1 2

1 2,

ds x d x d d x x

F x x Kδδ

−= + +

= +

 

   (13) 

where 

( ) 3 1
1 2 2 1 2 2 3 1 2, +d

RRF x x x d x d d x xω −= − + + ∆  (14) 

For the reconstructed control system, a novel robust roll stabilization control scheme can 
be formulated by, 
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( )( )

( ) ( )
( )

1 2

1 1/
1

1 2/
2

1 ,

sgn

sgn

F x x u
K

u t b s s

b s s

δ

τ

τ

δ

ξ

ξ

−

−

= − −

= − +

= −

   (15) 

where 1d , 2d , 3d , 1b , 2b  and τ  are positive constants. 

3.3 Design of roll stabilization controller 
The main conclusion of this part is summarized as the following theorem. 
Theorem 2. Considering the control system (4), the adaptive second-order sliding mode 
observer (9) and the roll stabilization control scheme (15) with the sliding manifold (12), 
then the sliding surface will converge to a small region around zero in finite time. 
Proof. Considering the “observer-controller” system, the proof of the Theorem 2. should 
be divided into two steps. First, the boundedness of the states of the closed-loop system 
in any time region [ ]0,t  is verified via the finite-time bounded function in Lemma 1; 
second, the finite-time convergent property is verified via the strict Lyapunov function.  
Step 1. Substituting (15) into (13) yield 

( ) ( )
1 2/1 1/

1 2
ˆ sgn sgns b s s b s s dt

ττ −−= ∆ − ∆ − − ∫




   (16) 

For ease of following proof, introduce two auxiliary vectors [ ] 2
1 2, Ty y ∈y =  as 

( )
1

1 2/

2 2
ˆ sgn

y s

y b s s dt
τ−

=

= ∆ − ∆ − ∫




   (17) 

Then take the derivative of (17) with respect to time, yield 

( )

( )

1 1/
1 2 1

1 2/
2 2

sgn

ˆ sgn

y y b s s

y b s s

τ

τ

−

−

= −

= ∆ − ∆ −









   (18) 

Denote ( )1 1/
1 1 2sgn

T
= y y yτ− 
 y , then take the following finite-time bounded function 

into account. 
( )2 1 / 2

1 1 2V y yτ τ−= +    (19) 

Take the time derivative of 1V , yields 

( ) ( )( ) ( )( )
( ) ( )( )
( ) ( )

1 2/ 1 1/ 1 2/
1 1 1 2 1 1 1 2 2 1 1

1 2/ 1 2/
1 1 2 2 2 1 1

1 2/ 1 2/
1 1 2 2 2 1 1 2

1 ˆ2 sgn sgn 2 sgn

1 ˆ2 sgn 2 sgn

1 ˆ2 sgn 2 2 sgn

V y y y b y y y b y y

y y y y b y y

y y y y b y y y

τ τ τ

τ τ

τ τ

τ
τ

τ
τ

τ
τ

− − −

− −

− −

−
= ⋅ − + ∆ − ∆ −

−
≤ ⋅ + ∆ − ∆ −

−
≤ ⋅ + ∆ − ∆ + ⋅



 









 (20) 
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According to Lemma 3 and the inequality 2 2 2a b ab+ ≥  

( )
( )

( )
( )

( )
( )

( )
( )

2
2 1 / 2 1 / 2

1 1 2 2

2 1 / 2 1 /2
1 2

1 2 ˆ2
2 1 2 1

22
2 1 2 1

V y y y

b y y

τ τ τ τ

τ τ τ τ

τ τ τ
τ τ τ

τ τ
τ τ τ

− −

− −

 − −
≤ + + + ∆ − ∆  − − 

 −
+ +  − − 



 

  (21) 

Next, take the following two cases into account. 

Case 1. 2 1y ≥ . According to ( ) ( )2 1 / 1,2τ τ− ∈ , one can imply that ( )2 1 / 2
2 2y yτ τ− ≤ . 

Substituting this inequality into (21) yield 

( ) ( )
2

2 1 / 22 2
1 1 1 1 1

2

1 1 1 1

22 ˆ2
1 1

ˆ

b bV y y

K V

τ ττ ττ
τ τ τ

− − −  ≤ + + + + ∆ − ∆   − −  

≤ + ∆ − ∆



 





  (22) 

with ( ) 2 2
1

22max ,2
1 1

b bK
τ ττ

τ τ τ
 − −

= + + 
− − 

 

Case 2. 2 1y < . According to ( ) ( )2 1 / 1,2τ τ− ∈  one can imply that ( )2 1 /
2 1y τ τ− ≤ . 

Substitute this inequality into (21) yield 

( ) ( )
2

2 1 / 22 2
1 1 1 1 1

2
2

2 1 1 1

22 ˆ1 +
1 1

ˆ1 +
1

b bV y y

bK V

τ ττ ττ
τ τ τ

τ
τ

− − −  ≤ + + + + ∆ − ∆   − −  
 ≤ + + ∆ − ∆ − 



 





  (23) 

with ( ) 2
2

22max ,1
1

b
K

ττ
τ τ

 − −
= + 

− 
. 

It follows for Proposition 1 that 1 1
ˆ∆ −∆  is continuous, differentiable and unlimited 

ultimate bounded, thus, 1 1
ˆ∆ −∆  is unlimited ultimate bounded. Assume there exists a 

large enough positive constant 1 1 max
ˆ ˆ∆ − ∆ ≤ ∆ 

 . Combining Case 1 and Case 2 yields, 

1 1 1 1V K V L≤ +    (24) 

with { }1 2max ,K K K=  and 22
1 max

ˆ1
1

bL τ
τ

 = + + ∆ − 
 . 

Solving the inequality (24) in arbitrary time region [ ]0,t  yields, 
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( ) 11 1
1 1

1 1

0 K tL LV V e
K K

 
≤ + − 
 

   (25) 

where ( )1 0V  is the initial value of 1V . From the Eq. (25), one can conclude that the 
“observer-controller” system is bounded. 
Step 2. It follows for Proposition 1 that ∆̂  will converge to a small region around ∆  in 
finite time and the term 1 1

ˆ∆ −∆  can be omitted when the system is stable. Combining 

with the conclusion of Step 1, the system (9) can be degraded as 

( )
( )

1 1/
1 2 1

1 2/
2 2

sgn

sgn

y y b s s

y b s s

τ

τ

−

−

= −

= −





   (26) 

Consider the following Lyapunov function 
( ) ( ) ( )( )22 1 / 2 1 /2

2 1 2 1 1 1 2
1 1 sgn

1 2 2
bV y y b y y yτ τ τ ττ
τ

− −= + + −
−

  (27) 

Similarly to 1V , 2V  is a semi-positive and continuous, so that 2V  can be used to evaluate 
the stability of the system. 
Taking the derivative of 2V  with respect to time yields, 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 /22
2 1 1 1 1 2 2

1 / 1/
1 1 1 2 1 1 2 1

1/ 2 1 / 2 1 / 1 / 23 2
1 1 2 1 1 1 1 1 1 2 1 2

2 21 sgn 2
1 2

1sgn

1 2 12 sgn

bV b y y y y y

b y y y b y y y

y b b y b y b y y y b y

τ τ

τ τ τ

τ τ τ τ τ τ τ

ττ
τ τ

τ
τ

τ τ τ
τ τ τ

−

− −

− − − −

− = + + − 
−

− −

− − − = − + − + 
 



 

 

   (28) 
Rewrite (28) into matrix form as 

1/
2 1

TV y τ−= − v Pv    (29) 

where [ ] 2
1 2, T= y y ∈v  and  

3 2
1 2 1 1

2
1 1

1 1

1 1

b b b b

b b

τ τ
τ τ

τ τ
τ τ

− − + − 
=  

− − −  

P  

It follows from 1 0b > , 2 0b >  and 0τ >  that P  is positive define. 

Rewrite 2V  as following matrix form, 

2
T=V v Qv    (30) 

where  
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22
1 1

1

1
1

2 2

b b b
Q

b

τ
τ
 + − = − 

−  

 

It follows from 1 0b > , 2 0b >  and 0τ >  that Q  is positive define and 2V  is radially 
unbounded, so that 

( ) ( )2 2
min 2 maxQ V Qλ λ≤ ≤v v    (31) 

According to ( ) ( )2 1 / 1 /2
1 2 1y y yτ τ τ τ− −= + ≥v , one can imply that ( )1/ 1/ 1

1y τ τ− −≥ v . 
Combining Eq. (29) and Eq. (31), one can conclude that 

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( )

1/ 1 2
2 min

2 3 / 1
min

2 3 / 2 2min
22 3 / 2 2

max

V v

V

τ

τ τ

τ τ
τ τ

λ

λ

λ

λ

− −

− −

− −
− −

≤ −

≤ −

≤ −
  

 P v

P v

P

P

   (32) 

Since ( ) ( ) ( )2 3 / 2 2 0,0.5τ τ− − ∈ , according to Lemma 1, the rotation rate converges to 
a small region around zero in finite time. This completes the proof. 

4 Simulation 
In this section, the effectiveness of the proposed robust finite time convergent roll 
stabilization controller is demonstrated through numerical simulations. The simulations 
are performed in the MATLAB platform by using a fourth-order Runge-Kutta solver with 
fixed step size 0.001 s. The variations of the coefficient parameter aCl  and Kδ  to flight 
time are similar to the flight condition in Trivedi et al. [Trivedi, Bandyopadhyay, 
Chaudhuri et al. (2015)]. 

4.1 Simulation for disturbance coefficient 
To verify the effectiveness of the proposed roll stabilization controller to deal with 
disturbance coefficient, simulations considering different angles of attack are performed. 
Two kinds of desired rotation rate were taken into account to demonstrate the general 
applicability and robustness of the proposed controller, which could be expressed as follows, 

Case 1: ( )0 22.5φ =  , ( ) ( )0 0 rad/sφ = , 0dφ =  , ( )0 rad/sdφ = ; 

Case 2: ( )0 0φ =  , ( ) ( )0 4 rad/sφ π= , ( )5 radd tφ π= , ( )5 rad/sdφ π= . 

The parameters of the proposed roll stabilization controller are given in Tab. 1. 
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Table 1: Roll stabilization controller design parameters 

Design parameter Value Design parameter Value 

1b , 2b  80,80  k  2.1 

1c , 2c  1.2,2 τ  2.5 

1d , 2d 1d  4,3,2.3 l  0.8 t 
ε  0.01   

Figs. 1-3 show the simulation result of Case 1. Fig. 1 shows that the roll stabilization 
controller can drive the roll angle successfully to converge to the desired roll angle. Fig. 2 
shows that the roll stabilization controller can drive the rotation rate successfully to 
converge to the desired one. Fig. 3 shows deflection angles to time. It can be observed that 
the fin deflection is smooth and converges to a small region around zero within 200 ms. 
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Figure 1: Roll angle curves at different angles for Case 1 
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Figure 2: Rotation rate curves at different angles for Case 1 
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Figure 3: Deflection angle curves at different angles for Case 1 

Figs. 4-6 show the results of Case 2. Fig. 4 shows that the roll stabilization controller can 
drive the roll angle successfully to converge to the desired roll angle. Fig. 5 shows that 
the roll stabilization controller can drive the rotation rate successfully to converge to the 
desired one. Fig. 6 shows deflection angles to time. It can be observed that the fin 
deflection is smooth and converges to a small region around zero within 0.15 s. The 
simulation results of Case 1 and Case 2 show that the roll stabilization controller can get 
rid of the influence of the disturbance coefficient considering different angles of attack. 
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Figure 4: Roll angle curves at different angles for Case 2 
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Figure 5: Rotation rate curves at different angles for Case 2 
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Figure 6: Deflection angle curves at different angles for Case 2 

4.2 Simulation for loss of actuator efficiency  
The loss of the bounded time-varying actuator efficiency is considered in this simulation, 
where loses 30% of actuator efficiency, i.e., 0.7ρ =  and the stuck fault is not considered, 
i.e., 0sσδ = . 
In order to show the superiority of the proposed roll stabilization controller, a second-
order sliding mode observer [He and Lin (2016)] based roll stabilization controller 
(STWO) is introduced in this simulation as comparisons.  
The STWO is defined in the equation below, 

( )

( )

1 1/
2 1 2 2 2 2 2

1 2/
2 2 2 2 2

ˆˆ ˆ ˆ

ˆ ˆ ˆ

g
RR

g

x f x x sign x x x K

f x x sign x x

δω δ−

−

= ∆ + − − − +

∆ = − −





 (33) 
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where 1 40f = , 2 40f =  and 2.1g = . 
The parameters of the proposed roll stabilization controller are given in Tab. 1. 
The simulation example is set up as follow: 

Case 3: ( )0 22.5φ =  , ( ) ( )0 0 rad/sφ = , ( )0 raddφ = , ( )0 rad/sdφ = . 

The disturbance coefficient are selected where 16α =   
Figs. 7-10 show the simulation results for loss actuator effectiveness. Fig. 7 shows that 
the proposed roll stabilization controllers can drive the roll angle to converge to the 
desired roll angle more precisely. Fig. 8 shows that the proposed roll stabilization 
controllers can drive the rotation rate successfully to converge to the desired value in a 
shorter time and remain on the desired value. Fig. 9 shows that the proposed roll 
stabilization controller can drive the deflection angle successfully and smoothly to 
converge to the desired one within 0.2 s. Fig. 10 shows the profile of the dual-layer 
adaption gain ( )L t . It can be observed that the adaption gain is bounded and gradually 
converging. The simulation results of Case 3 show that the roll stabilization controller 
can drive both roll angle and rate to converge to the desired value smoothly in a short 
time around 0.2 s considering the loss of actuator efficiency. 
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Figure 7: Roll angle curves for loss actuator effectiveness 
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Figure 8: Rotation rate curves for loss actuator effectiveness 
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Figure 9: Deflection angle curves for loss actuator effectiveness 
 



 
 
 
124                                                                                        CMES, vol.122, no.1, pp.109-130, 2020 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time(s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
da

pt
iv

e 
ga

in
 

L

Without lose of actuator effectiveness

With lose of actuator effectiveness

 

Figure 10: The profile of dual-layer adaptive gain 

4.3 Simulation for stuck fault 
The stuck fault is considered in this simulation, where start at 0.4t s= , end at 0.45t s=  and 
deflection angle satisfies 0.1sin(t)sδ =  and the loss of actuator efficiency is not considered. 
To show the superiority of the proposed roll stabilization controller, the STWO is 
proposed in this simulation as comparisons. The parameters of STWO are the same as in 
Section 4.2. 
The parameters of the proposed roll stabilization controller are given in Tab. 1. 
The simulation example is set up as in Section 4.2. 
The disturbance coefficient is selected where 16α =   
Figs. 11-14 show the simulation results for the stuck fault of the actuator. Fig. 11 shows 
that the proposed roll stabilization controllers can drive the roll angle to converge to 
desired roll angle more precisely after the stuck fault. Fig. 12 shows that the proposed roll 
stabilization controllers can drive the rotation rate successfully to converge to the desired 
value in a shorter time and remain on the desired value after the stuck fault. Fig. 13 
shows that the proposed roll stabilization controller can drive the deflection angle 
successfully and smoothly to converge to the desired one after the stuck fault. Fig. 14 
shows the profile of the dual-layer adaption gain ( )L t . It can be observed that the 
adaption gain is bounded and gradually converging. The simulation results of Case 3 
show that the roll stabilization controller can drive both roll angle and rate to converge to 
the desired value smoothly in a short time around 0.3 s considering the stuck fault. 
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Figure 11: Roll angle curves for stuck fault 
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Figure 12: Rotation rate curves for stuck fault 
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Figure 13: Deflection angle curves for stuck fault 
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Figure 14: The profile of dual-layer adaptive gain 

5 Conclusions 
A robust roll stabilization controller is proposed with disturbance coefficient and actuator 
failure consideration is proposed in this paper. The details of the proposed roll 
stabilization controller are summarized as follows: (1) an adaptive second-order sliding 
mode observer is presented to select the proper design parameter and estimate the 
knowledge of aerodynamic disturbance and actuator failure; (2) the proposed roll 
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stabilization control scheme drives both roll angle and rotation rate smoothly to converge 
to the desired value. 
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Appendix A. Proof of Theorem 1 
Take the time derivative of e  yield 

( ) ( )

( ) ( )

1 1/
1 2 1 1 1

1 2/
2 2 1 1

sgn

ˆ sgn

k

k

e e c L t e e

e c L t e e

−

−

= −

= ∆ −







   (A.1) 

Consider following Lyapunov function candidate 
( ) ( ) ( ) ( ) ( )( )22 1 / 1 /2 2

3 1 2 1 1 1 2
1 1 sgn

1 2 2
p p p pc L t k

V e e c L t e e e
k

− −= + + −
−

  (A.2) 

Rewrite this equation as the following matrix form 

3
TV e e= Γ    (A.3) 

where 
( ) ( ) ( )

( )

2 2
1 1

1

1 1
2

2

c L t k
c L t c L t

k
c L t

 
+ − −Γ =  

 − 

 

Since 1 0c > , 2 0c >  and 2k > , 3V  is positive define and radially unbounded. 

( ) ( )2 2
min 3 maxVλ λΓ ≤ ≤ Γe e    (A.4) 

Through similar analysis of 1V  and 2V , one can imply that 3V  can be used to evaluate the 
finite-time stability of (10). 
Take the derivative of 3V  with respect to time yield 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )
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2 / 1 /2 2
3 1 1 1 2 1 1 1

1 / 2 /
2 1 1 1 2 1 1
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1/ 2 1 / 2 1 /3/2 3/2
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1 2
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p p p p
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Since 1 0c > , 2 0c >  and 2k > , it is easy to verify that M  is Hurwitz. 

It follows from ( ) ( )2 1 / 1 /2
1 2 1

p p p pe e e− −= + ≥e  that ( )1/ 1/ 1
1

p pe − −≥ e . Combining with (A.4) 
and (A.5), one can conclude that 

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

1/ 1 2
3 min max

2 / 1
min max

1/2
2 / 1 3

min max
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p

p p

p p
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≤ − + ∆

≤ − − ∆
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Γ

 
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

e M e B e

M e B e

M e B

  (A.6) 

If ( ) ( ) ( )2 / 1
min max 0p pλ − − − ∆ >M e B , (A.6) can be transformed as 

( )

1/2
3

3

max

V
V

ρ

λ
≤ −

Γ
 , where 

( ) ( ) ( )2 / 1
min max 0p pρ λ − −= − ∆ >M e B . According to Lemma1, the system rotation rate can 

converge into the region 
( )

( ) ( )2 / 1

max

min

p p

λ

− −
 ∆

≤   
 

 B
e

M
, this completes the proof. 
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