TY - EJOU
AU - Long, Kai
AU - Yang, Xiaoyu
AU - Saeed, Nouman
AU - Chen, Zhuo
AU - Xie, Yi Min
TI - Topological Design of Microstructures of Materials Containing Multiple Phases of Distinct Poisson’s Ratios
T2 - Computer Modeling in Engineering \& Sciences
PY - 2021
VL - 126
IS - 1
SN - 1526-1506
AB - A methodology for achieving the maximum bulk or shear modulus in an elastic composite composed of two
isotropic phases with distinct Poisson’s ratios is proposed. A topology optimization algorithm is developed which
is capable of nding microstructures with extreme properties very close to theoretical upper bounds. The effective mechanical properties of the designed composite are determined by a numerical homogenization technique. The
sensitivities with respect to design variables are derived by simultaneously interpolating Young’s modulus and Poisson’s ratio using different parameters. The so-called solid isotropic material with penalization method is developed
to establish the optimization formulation. Maximum bulk or shear modulus is considered as the objective function,
and the volume fraction of constituent phases is taken as constraints. The method of moving asymptotes is applied
to update the design variables. Several 3D numerical examples are presented to demonstrate the effectiveness of
the proposed structural optimization method. The effects of key parameters such as Poisson’s ratios and volume
fractions of constituent phase on the nal designs are investigated. A series of novel microstructures are obtained
from the proposed approach. It is found that the optimized bulk and shear moduli of all the studied composites are
very close to the Hashin-Shtrikman-Walpole bounds.
KW - Poisson’s ratio; topology optimization; homogenization; bulk modulus; shear modulus
DO - 10.32604/cmes.2021.012734