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Abstract: Computational methods have significantly transformed biomedical research, offering a comprehensive

exploration of disease mechanisms and molecular protein functions. This article reviews a spectrum of computational

tools and network analysis databases that play a crucial role in identifying potential interactions and signaling

networks contributing to the onset of disease states. The utilization of protein/gene interaction and genetic variation

databases, coupled with pathway analysis can facilitate the identification of potential drug targets. By bridging the gap

between molecular-level information and disease understanding, this review contributes insights into the impactful

utilization of computational methods, paving the way for targeted interventions and therapeutic advancements in

biomedical research.

Introduction

The field of bioinformatics has experienced significant
expansion within systems biology, specifically through the
evolution of network databases and tools. These
advancements provide essential means for effectively
analyzing complex biological processes, genes, and protein
networks [1]. Numerous diseases spanning diverse medical
domains, such as oncology, cancer immunotherapy,
infectious diseases, neurological disorders, heart failure,
inflammation, and oxidative stress, have been linked to
disruptions in protein-protein interactions (PPIs). In the
cellular systems of all living organisms, PPIs and multi-
protein complexes play pivotal roles, and deviations from
their normal patterns can lead to disease states.

Biomolecular networks, comprising gene and
transcription regulatory networks, protein-protein
interaction networks, metabolic networks, signaling
networks, and hybrid networks, serve as potent resources for
uncovering disease-driving genes and genetic modules. The
advent of high-throughput measurement techniques like
microarray, RNA-seq, chromatin immunoprecipitation with

DNA microarray (ChIP-on-chip), and mass spectrometry
has led to the generation of extensive biological datasets.
These datasets, enriched with detailed information, prove
invaluable for comprehending the mechanisms of molecular
biological systems, contributing to the diagnosis, treatment,
and drug design for complex diseases [2,3].

Despite the existence of numerous tools and databases,
there is a lack of systematic comparison and organization
of information for understanding disease mechanisms and
target identification. This review is dedicated to
computational tools and databases that significantly
contribute to our understanding of diseases, encompassing
protein-protein, protein-gene, and gene-gene interactions,
genetic variations, and their annotations in metabolic
pathways. By exploring various facets of bioinformatics
analysis, including network analysis, gene-gene associations,
and disease pathway enrichment analyses, our goal is to
offer a comprehensive overview of the computational
landscape in biomedical research. Subsequent sections
will delve into disease-single nucleotide polymorphism
(SNP)/gene associations and genetic variation analyses,
dissecting disease mechanisms through protein-protein
interaction studies, structural modeling, and dynamics.
This comprehensive approach positions our review as a
valuable resource for researchers navigating the intricate
realm of computational tools and databases in biomedical
research.
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TABLE 1

Key databases for understanding gene and protein interactions, mutational variations, and disease mechanisms

Database Description URL

Network analysis, Integration, protein-protein, and Gene-gene association

BIOGRID Collection of protein and genetic interactions https://thebiogrid.org/

Uniprot Protein sequences and annotations https://www.uniprot.org/

Mentha Integrated resource for protein interactions http://mentha.uniroma2.it/

IntAct Molecular interactions database https://www.ebi.ac.uk/intact/

DIP Database of interacting proteins http://dip.doe-mbi.ucla.edu/

HPRD Human protein reference database http://www.hprd.org/

MINT Molecular interaction database

HumanNet Human protein-protein interaction network http://www.functionalnet.org/humannet/

FunCoup Functional coupling prediction tool

String Known and predicted protein-protein interactions https://string-db.org/

Disease pathway enrichment analysis

KEGG
PATHWAY

A collection of manually drawn pathway maps, including pathways related
to human diseases. It contains 548 pathway maps

https://www.kegg.jp/kegg/pathway.html

WikiPathways A collaborative platform dedicated to the curation of biological pathways for
different species including homo sapiens. It contains 3007 pathways

https://www.wikipathways.org/

Reactome A manually curated and peer-reviewed pathway database, which can
annotate and display pathways related to disease

https://reactome.org/

Disease-SNP/gene association and genetic variation analysis

miRdSNP Database for exploring the association between microRNA and SNPs (single
nucleotide polymorphisms)

https://mirdsnp.ccr.buffalo.edu/

dbSNP Database providing a comprehensive catalog of SNPs, including information
on their functional effects

https://www.ncbi.nlm.nih.gov/snp/

WTCCC Wellcome trust case control consortium, known for its contribution to large-
scale genome-wide association studies

https://www.wtccc.org.uk/

GWAS
catalog

Catalog compiling data from genome-wide association studies, offering
information on genetic variants associated with traits and diseases

https://www.ebi.ac.uk/gwas/

ClinVar Database providing information on the clinical significance of genetic
variants, including associations with diseases

https://www.ncbi.nlm.nih.gov/clinvar/

PheGenI Phenotype-Genotype integrator, integrating genotype and phenotype data
for the exploration of genetic associations with traits

https://www.ncbi.nlm.nih.gov/gap/phegeni/

GAD Genetic association database, a resource cataloging human genetic
association studies and their reported associations

https://maayanlab.cloud/Harmonizome/
resource/Genetic+Association+Database

MalaCards Integrated database offering comprehensive information on genetic
variations and their associations with diseases

https://www.malacards.org/

COSMIC Catalog of somatic mutations in cancer, focusing on somatic mutations in
human cancers and their functional impact

https://cancer.sanger.ac.uk/cosmic

HGMD Human gene mutation database, a comprehensive collection of germline
mutations associated with human inherited diseases

https://www.qiagenbioinformatics.com/
products/human-gene-mutation-database/

Functional annotation and gene set analysis

Gene-
ontology

Standardized system describing gene product attributes in a species-
independent manner. Categorizes genes based on molecular function,
biological process, and cellular component. Enriches biological
interpretations by systematically classifying gene products across diverse
organisms

http://geneontology.org/

DAVID Comprehensive bioinformatics platform for functional annotation and
enrichment analysis of gene lists. Integrates diverse biological resources and
annotation data

https://david.ncifcrf.gov/
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Bioinformatics Analysis and Functional Insights

Network analysis, integration, protein-protein and gene-gene
associations
Protein-protein interaction networks are crucial for
understanding disease mechanisms and identifying potential
therapeutic targets. Analyzing these interactions provides
insights into how a protein interacts within cellular
pathways, unveiling key players and vulnerabilities that can
be targeted for intervention in diseases. Predicting the
protein function of a target protein and its drugability is
crucial, especially since it has to be mediated by protein-
protein interactions. Using computational tools (a summary
given in Table 1), the analysis of interaction networks is
increasingly popular, also due to challenges in scaling up
interaction experiments [5]. Utilizing data from global
mRNA expression profiling studies and curated interaction
databases, tools like Cytoscape provide a systematic and
accessible approach for network visualization and
integration, with numerous plugins available for additional
data analysis.

Some of the common databases containing information
about protein-protein interaction (PPI) are reported in
Fig. 1. The majority of genes and proteins realize resulting
phenotype functions as a set of interactions, as has been
reviewed by Liu and Chen, for the available PPI databases
and methods for predicting PPI networks [6]. Among the
PPI database, BioGRID, MIPS, and STRING are tools for

analyzing protein functions (Fig. 1) [7–9]. BioGRID, often
dubbed the golden sea of PPI drug targets, stands out as a
comprehensive repository, excelling in both the number of
proteins and exclusive interactions [7]. Boasting a vast
database housing 67.6 million proteins and over 20 billion
interactions, BioGRID is a vital resource for exhaustive
searches in both experimental and predicted PPIs [7].
Positioned at the forefront of network analysis and gene-
gene associations, BioGRID distinguishes itself as a pivotal
resource with, the highest coverage, curating and integrating
data from diverse sources to advance systems and molecular
biology [10]. Despite limitations in listing multi-protein
complexes larger than dimers, BioGRID’s recent update
includes over 1 million non-redundant interactions and
stands as a primary source for experimentally derived PPI
data and complex cell signaling networks [10]. Completing
this ensemble, STRING (Search Tool for the Retrieval of
Interacting Genes/Proteins) spans both direct and indirect
protein-protein interactions. Integrating experimental and
predicted interaction data, STRING offers a panoramic view
of the interactome. Researchers across the globe rely on
STRING for network analysis, using its insights to explore
functional associations between genes and proteins across
diverse organisms [11].

Another database, BIND, although its curation ended in
2005, remains a highly cited and valuable resource [12]. This
peer-reviewed database contains diversely curated
experimental data, including high-throughput datasets and

Table 1 (continued)

Database Description URL

Enrichr Web-based tool for gene set enrichment analysis against an extensive
collection of libraries. Identifies enriched biological terms, pathways, and
functions associated with gene lists

https://maayanlab.cloud/Enrichr/

g: Profiler Versatile tool for functional enrichment and profiling of gene lists. Integrates
databases to reveal enriched terms, pathways, and functions. Offers
visualization tools for result interpretation.

https://biit.cs.ut.ee/gprofiler/

FIGURE 1. Broad classification of some of the
common databases containing information about
PPI (reprinted with copyright permission) [4].
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protein complexes from PDB. BIND continues to contribute
significantly to the understanding of complex cell signaling
networks [13].

UniProt stands as a comprehensive database, providing a
vast collection of protein sequences and annotations. Serving
as a central hub, it guides researchers through the complexities
of gene-gene associations and protein interactions,
synthesizing data from diverse sources. With annotated
information and links to databases such as InterPro,
European Molecular Biology Laboratory (EMBL), Protein
ANalysis THrough Evolutionary Relationships (PANTHER),
Protein FAMilies (Pfam), Gene3D, Superfamily (SUPFAM),
Reference Sequence (RefSeq), AlphaFoldDB, and SWISS-
MODEL Repository (SMR), UniProt offers a wealth of
knowledge on biological entities. Mentha and IntAct serve
as vital repositories for experimentally verified interaction
datasets [14]. Mentha facilitates network analysis for 8
interactomes, unraveling molecular pathways and cellular
processes, and assigns to each interaction a reliability score
that takes into account all the supporting evidence [14].
This database updates the interactions every week so one of
the most up-to-date. IntAct, developed at EMBL-EBI,
extends beyond binary interactions to include complex
molecular associations, enhancing network analysis and
functional genomics [15]. As an open database, IntAct
sources interactions from literature and direct data
depositions by expert curators, utilizing a deep annotation
model for detailed information dissemination.

The primary and secondary protein interaction databases
along with the interaction coverage of these datasets are
illustrated in Fig. 2. Database of Interacting Proteins (DIP)
is a comprehensive catalog of experimentally determined
protein-protein interactions, that explore protein interaction
networks [16]. This database includes intricate associations
underlying cellular processes and gene-gene relationships,
combining information from various sources to create a
unified set of protein-protein interactions.

MINT (Molecular INTeraction Database) takes center
stage in the molecular ballet, offering a curated dataset
focused on experimentally verified molecular interactions,
with a primary emphasis on protein-protein interactions

(Table 1). MINT facilitates network analysis and functional
genomics, providing researchers with insights into the
intricate molecular mechanisms within cells [17]. The
database, with more than 12,5464 interactions and 25,530
proteins, primarily focuses on model organisms and assigns
confidence scores to experimentally detected protein-protein
interactions, reflecting their reliability on a scale from 0 to 1
[17,18]. MINT’s unique approach involves extracting
interaction data and experimental details from peer-
reviewed literature using a literature mining program, the
MINT assistant, and subsequent validation by expert
curators [17]. This dual curation enhances the reliability
and comprehensiveness of protein-protein interaction
information within the DIP database. Additionally, HPRD
(Human Protein Reference Database) specializes in
providing detailed insights into human proteins and their
interactions, enriching the tapestry of gene-gene associations
within the human biological context [19]. Even though
BioGRID shows the highest coverage (69.5%) of PPIs,
HPRD retained the top position in terms of usage frequency
[20]. The database covers interaction networks from various
organisms, including Homo sapiens, C. elegans, bacteria, and
73 different viruses. As an active partner of the International
Molecular Exchange Consortium (IMEx), MINT aligns with
IMEx standards and supports the Protein Standard Initiative
(PSI) recommendation [17]. Notably, since September 2013,
MINT has integrated the IntACT database infrastructure to
streamline efforts and enhance software development [17].

Overall, public databases like BioGRID, DIP, MINT, and
STRING provide predictive and experimental interaction
information. Network representations, crucial for visualizing
complex biological activities, describe interactions between
entities of interest. Schwikowski et al. used PPI networks to
predict novel protein functions in yeast, revealing a single
large network of 2,358 interactions out of 2,709 total
interactions [21]. Global patterns in large-scale systems can
be effectively shown using nodes and edges to represent
entities and interactions, respectively.

HumanNet uses a holistic approach by integrating
diverse genomic data to infer functional relationships
between genes and it covers 99.8% of human protein-coding

FIGURE 2. (a) Schematic representation of data flow (direction is shown by arrow) among primary (red color) and secondary (blue node)
protein interaction databases. The arrows indicate the direction of data flow. (b) Protein interaction coverage across databases (reprint with
copyright permission) [20].
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genes. HumanNet can predict host genes associated with
diseases. By leveraging information from multiple sources,
including protein-protein interactions, HumanNet aids in
constructing a comprehensive functional gene network [22].

In the symphony of databases, FunCoup emerges as a key
player, exploring functional coupling between proteins [23].
Integrating various types of functional genomics data,
FunCoup becomes a guide for researchers deciphering the
intricate web of functional relationships and coordination
between genes in biological processes.

Disease pathway enrichment analysis
Pathway enrichment analysis helps reveal the intricate
connections between different biological pathways involved
in diseases, providing insights into their molecular
complexities. Databases such as KEGG (Kyoto Encyclopedia
of Genes and Genomes) [24], Reactome [25], and
WikiPathways offer comprehensive repositories of curated
pathways, serving as foundational resources for pathway
enrichment analyses. By employing statistical methods, these
analyses identify overrepresented pathways in a set of genes
associated with a particular disease, providing a systems-
level understanding of the underlying molecular
mechanisms. Tools like IPA (Ingenuity Pathway Analysis)
can further enhance this exploration, offering interactive
visualization and interpretation of complex biological
pathways, thus empowering researchers to dissect disease-
related networks and formulate targeted interventions based
on a holistic understanding of the molecular landscape.

Reactome is a database of pathways and reactions
(pathway steps) in human biology that have been curated by
expert biologist researchers and is extensively cross-
referenced to other resources, e.g., National Center for
Biotechnology Information (NCBI), Ensembl, UniProt,
University of California, Santa Cruz (UCSC) Genome
Browser, HapMap, KEGG (Gene and Compound), ChEBI,
PubMed and GO [25,26]. It includes many events in biology
that involve changes in state, such as binding, activation,
translocation, and degradation, in addition to classical
biochemical pathways.

Disease-SNP/gene association and genetic variation analysis
Information on genetic variations associated with diseases can
enable researchers to understand the underlying genetic
factors, discover potential biomarkers, and uncover novel
pathways for targeted interventions in various medical
conditions. Such genetic variations help in dissecting the
interplay between diseases and genetic elements. Notable
platforms include miRdSNP, which focuses on microRNA-
SNP interactions [27]; dbSNP, a comprehensive repository
for cataloging SNPs across the human genome; Wellcome
Trust Case Control Consortium (WTCCC) and Genome-
Wide Association Studies (GWAS) catalog, valuable
resources derived from genome-wide association studies
[28]; ClinVar, offering insights into the clinical significance
of genetic variations [29]; and DisGeNET, an aggregator of
gene-disease associations [30]. Furthermore, Online
Mendelian Inheritance in Man (OMIM) serves as a
definitive resource for inherited diseases, while SIDD and
CTD provide unique perspectives on SNPs in diseases

[14,16]. Phar-mGKB explores the genetic basis of drug
response [31], Genetic Association Database (GAD)
compiles information on genetic associations with various
diseases and traits [32], and disease-specific databases such
as Malacards, Catalogue of Somatic Mutations In Cancer
(COSMIC), Human Gene Mutation Database (HGMD), and
Psychiatric Genomics Consortium Database (PsyGENET)
delve into various medical domains [33–36]. Collectively,
these databases, including DISEASE [37,38], contribute to a
comprehensive understanding of disease-SNP/gene
associations and genetic variation analysis, offering insights
that span from the molecular to the clinical level.

In the pursuit of unraveling the complexities of the
genetic basis of diseases, these databases collectively
empower researchers to navigate the expansive landscape of
disease-SNP/gene associations and genetic variation analysis.
Each database provides a unique lens, from the intricacies of
microRNA-SNP interactions [39] to cataloging SNPs across
the human genome, insights from genome-wide association
studies [40], and clinical significance of genetic variations
[29]. Additionally, these resources aggregate gene-disease
associations [41], offer detailed information on inherited
diseases and explore the impact of single nucleotide changes
in diseases [14,16]. Specialized databases focus on drug-gene
interactions [31], genetic associations with diseases [42], and
specific medical domains [33–36]. Together with DISEASE
[38], these databases form an invaluable repository,
contributing to our understanding of genetic variations and
their implications in diseases across diverse medical contexts.

Functional annotation and gene set analysis
Gene annotation facilitates the understanding of biological
functions, processes, and cellular components associated
with diseases, enabling a comprehensive exploration of gene
lists and uncovering the functional significance of gene sets
in disease-related pathways. Gene Ontology (GO) acts as a
foundational resource, providing a structured vocabulary
and hierarchical framework to systematically annotate and
analyze the functional landscape of genes [43]. DAVID
(Database for Annotation, Visualization, and Integrated
Discovery) seamlessly integrates functional genomics data
with annotation tools, offering a versatile suite to interpret
large-scale genomic datasets [44]. Enrichr enhances
functional annotation with a user-friendly interface,
enabling comprehensive exploration of gene sets and
dynamic visualization of enrichment results [45]. g: Profiler,
a powerful tool for functional enrichment analysis, employs
a diverse set of statistical methods and integrates various
organism databases, providing researchers with a versatile
resource for uncovering functional signatures associated
with gene lists [46]. Together, Gene Ontology, DAVID,
Enrichr, and g: Profiler form a formidable quartet,
combining fundamental vocabulary with dynamic and user-
friendly platforms to guide researchers in decoding the
complex functional dimensions of genes and pathways.

Other tools
Gene Expression Omnibus (GEO) is a public database hosted
by the NCBI provides a platform for the storage and retrieval
of high-throughput gene expression and molecular abundance
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data [48]. Researchers worldwide can access and analyze a
diverse range of genomic datasets, contributing to the
advancement of genomics and biomedical research. Another
tool, Search Tool for Interactions of Chemicals (STITCH) is
a computational tool designed to explore interactions
between chemicals, including small molecules and drugs
[49,50].

STITCH integrates extensive data on protein
interactions, pathways, and text-mining information,
offering insights into the intricate network of chemical
interactions, comprising a remarkable 1.6 billion
interactions. Research by O’Reilly et al. exemplifies
STITCH’s utility in identifying potential drug targets for α1-
antitrypsin deficiency [51]. STITCH can also be queried for
a set of chemicals to reveal possible targets, as demonstrated

in the study by Kumar et al. which screened compounds
capable of altering intracellular manganese levels [52].

Limitation of the approaches
Among the methods reviewed to determine protein-protein
and gene-gene associations, several limitations exist. In
databases such as BIOGRID and MENTHA, although the
data is derived from experimental evidence, biases may be
present towards well-studied genes and interactions. These
databases might not capture the entirety of possible
interactions and can be limited in their representation of
certain proteins or conditions, potentially overlooking the
full complexity of dynamic protein-protein interactions. In
the case of IntAct, DIP, and HPRD, the coverage might
exhibit bias towards specific model organisms or

FIGURE 3. Functional enrichment analyses of differentially expressed genes (DEGs) and hub genes in expression data of glioma samples from
Henry Ford Hospital (GSE4290). The volcano plot in (a) illustrates up-regulated (red dots) and down-regulated (blue dots) DEGs. GO function
analysis (b) revealed statistically enriched biological processes, molecular functions, and cellular components among the DEGs. KEGG pathway
analysis (c) identified the top 30 enriched pathways associated with DEGs. Additionally, (d) showcases the top 20 hub genes predicted from the
DEGs using the Cytoscape and STRING, crucial in the occurrence and progression of human glioblastoma multiforme [47].
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well-studied proteins, leading to a potential lack of
representation for diverse interactions occurring in different
cellular contexts. Additionally, these databases may not be
fully up-to-date and could lack information on less-studied
proteins. MINT may suffer from context-dependent
interactions that are not fully represented. In the case of
HumanNet, FunCoup, and STRING, the accuracy of
predicted interactions depends on the underlying
algorithms. Predicted interactions may not always align with
actual biological interactions, introducing the possibility of
false positives.

In the context of Genetic Variation Analysis methods,
such as miRdSNP, there may be limited coverage for specific
microRNAs and SNPs, potentially resulting in the omission
of certain associations. Considering the diverse functional
effects of SNPs, the dbSNP database may lack detailed
annotations for some variants, and it might not
comprehensively capture rare or novel variants. The
significance of databases like WTCCC and GWAS,
emphasizing large-scale genome-wide association studies,
may inadvertently overlook rare variants within certain
populations, impacting the replicability of findings across
diverse populations. In the case of ClinVar, detailed clinical
annotations for some variants may be lacking, and the
database might not encompass the full spectrum of genetic
variation. PheGenI may face limitations due to the restricted
availability of phenotypic data for certain traits, potentially
impacting the analyses. The COSMIC database, with its
exclusive focus on somatic mutations in cancer, may not
provide comprehensive coverage of germline mutations and
is particularly tailored to cancer-related research. Regarding
HGMD, the database predominantly covers germline
mutations associated with inherited diseases, potentially
overlooking somatic mutations. Additionally, accessibility to
HGMD may be restricted, requiring a subscription for full
access.

Enrichment case studies of human disease
Predicting disease-related genes involves leveraging various
features and patterns. The rapid identification of the
genome-wide human PPIs network provided us with new
avenues for elucidating the disease gene directly from the
PPIs network [53].

Zheng et al. utilized computational approaches,
specifically conducting functional enrichment analyses, to
unveil 1,170 differentially expressed genes (DEGs) in
glioblastoma multiforme (GBM) samples and identify the
top 20 hub genes (Fig. 3) [47]. A similar analysis of
enrichment and protein-pathway correlation was performed
by Armendáriz-Castillo et al., which identified potential
molecular markers for Alternative Lengthening of Telomeres
(ALT) in 411 telomere maintenance gene sets across 31
Pan-Cancer Atlas studies. They employed the STRING
database to construct a protein-protein interaction network
and utilized GO, KEGG, and REACTOME for enrichment
analysis. In doing so, they identified primary pathways and
their involvement in ALT-related processes, such as
homologous recombination and homology-directed repair.
Researchers have explored sequence features [54] and
expression patterns [55] to identify disease-causing genes or

gene prioritization have recently been reviewed by Kaushal
et al. [56] and the computational techniques have been
classified into filtering-based techniques (work based on the
properties of genes), similarity-based techniques (perform
prioritization by calculating the similarity between candidate
genes and seed genes), and network-based techniques (uses
the topology of the network for ranking the genes) [57].

Topological features are more important and popular in
PPI networks owing to the basis that disease-associated genes
exhibit non-random positioning in the network. They often
display high connectivity, clustering, and central network
locations [58]. Researchers have discovered additional
topological features; for instance, Tu et al. [59] found that
the degrees of disease genes in PPI networks are
significantly higher than other genes. Oti et al. [60] observed
that genes neighboring disease-related genes are more likely
to be disease-related. Xu et al. [53] developed a classifier
employing five quantities to measure different topological
features. Despite their success, local topology-based methods
face limitations when predicting disease-related genes within
a single disease-gene family, especially for genes not in
proximity to known disease genes. To address this, a new
method has been proposed based on topological similarity
[61] that considers the entire graph, allowing two vertices to
be similar without sharing neighbors [38].

Protein-protein interaction and the genes susceptible in
rare diseases have been found important and a database
integration called ODCs (Orphan Disease Connections)
establishes shared susceptibility genes and protein
interactions of the corresponding gene products. the diseases
connected to one of interest, to explore in detail the
connections between two rare diseases, or to search for rare
diseases associated with a given gene [38].

In the exploration of Disease Biomarker Discovery, tools
for discerning interactions among disease-related proteins
emerge as potential biomarkers. Investigating these
interactions holds the promise of uncovering diagnostic
markers for diseases. A gene interaction network was built
using 98 shared Differentially Expressed Genes (DEGs) in
dysplastic and cancer cells. The analysis identified common
modules, hubs, and significant motifs. Notably, ZWINT,
CDC7, MCM4, MCM2, and MCM6 were identified as
influential genes in neoplasia, playing a crucial role in
disease progression [62]. Metabolic signatures were
employed to investigate the pathogenesis of Hypersensitivity
Pneumonitis (HP), allowing the identification of enriched
biological processes, altered pathways, and the protein-
protein interaction (PPI) network associated with
differentially expressed genes. The findings reveal impaired
glycolysis and phosphatidylinositol-3-kinase (PI3K/AKT)
pathways in patients with HP [63].

Conclusion and Future Perspective

The comprehensive review underscores the importance of
integrating various databases, providing a holistic
understanding of protein interactions, disease pathways, and
genetic variations. Access to genetic variation tools and
databases offers insights into genetic contributions to
pathologies. The identification of hub genes, enriched
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pathways, and potential molecular markers sets the stage for
targeted interventions in complex diseases.

Themed projects dedicated to interaction curation have
recently emerged, focusing on pivotal biological processes
relevant to diseases [64]. BIOGRID’s project-based curation
approach for human protein interactions enables the
creation of focused, impactful datasets. These projects also
explore specific diseases, such as glioblastoma (51,613
interactions), Fanconi Anemia (32,016 interactions),
COVID-19 Coronavirus (42,526 interactions), the Ubiquitin-
Proteasome System (409,395 interactions), Autophagy
(53,334 interactions), and S. cerevisiae Kinome (106,059
interactions) [65] (updated on 18th Feb 2024). New themed
curation projects underway include Alzheimer’s disease [66]
as well as new viral, bacterial, and protozoan pathogens, all
of which will be supported by dedicated themed project pages.

Recent advances in artificial intelligence approaches,
particularly in secondary structure prediction [67], as
demonstrated by tools like AlphaFold [68], NeuralPLexer
[69], or RoseTTAfold [70] have unraveled extensive
information related to the primary structure. This includes
mutations and interfacial protein-protein interactions (or
multimers), not only in exploring metabolic pathways but
also in rare diseases such as motor neuron diseases [71,72].
Despite this progress, challenges like predicting post-
translational modifications and navigating the complexities
of DNA, RNA, and their complexes still exist.

While combining various methods and tools, addressing
challenges such as data heterogeneity, enhancing
interoperability between databases, and incorporating
cutting-edge technologies like deep learning for more
accurate predictions is essential. Collaborative efforts, as
demonstrated by databases like Mentha and IntAct, highlight
the benefits of data sharing, standardization, and mutual
support within the scientific community. Encouraging more
collaborations is crucial for further advancements.
Continuous progress and the integration of multi-omics data
are anticipated to reshape the biomedical research landscape,
opening new avenues for transformative discoveries.
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