TY - EJOU
AU - V.G.Yakhno,
TI - Computation of Dyadic Green's Functions for Electrodynamics in Quasi-Static Approximation with Tensor Conductivity
T2 - Computers, Materials \& Continua
PY - 2011
VL - 21
IS - 1
SN - 1546-2226
AB - Homogeneous non-dispersive anisotropic materials, characterized by a positive constant permeability and a symmetric positive definite conductivity tensor, are considered in the paper. In these anisotropic materials, the electric and magnetic dyadic Green's functions are defined as electric and magnetic fields arising from impulsive current dipoles and satisfying the time-dependent Maxwell's equations in quasi-static approximation. A new method of deriving these dyadic Green's functions is suggested in the paper. This method consists of several steps: equations for electric and magnetic dyadic Green's functions are written in terms of the Fourier modes; explicit formulae for the Fourier modes of dyadic Green's functions are derived using the matrix transformations and solutions of some ordinary differential equations depending on the Fourier parameters; the inverse Fourier transform is applied to obtained formulae to find explicit formulae for dyadic Green's functions.
KW - time-dependent Maxwell's equations
KW - anisotropic conductivity tensor
KW - dyadic Green's functions
KW - analytical method
KW - matrix transformations
KW - simulation
DO - 10.3970/cmc.2011.021.001