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ABSTRACT

Fuzzy C-Means (FCM) is an effective and widely used clustering algorithm, but there are still some problems.
considering the number of clusters must be determined manually, the local optimal solutions is easily influenced by
the random selection of initial cluster centers, and the performance of Euclid distance in complex high-dimensional
data is poor. To solve the above problems, the improved FCM clustering algorithm based on density Canopy and
Manifold learning (DM-FCM) is proposed. First, a density Canopy algorithm based on improved local density is
proposed to automatically deter-mine the number of clusters and initial cluster centers, which improves the self-
adaptability and stability of the algorithm. Then, considering that high-dimensional data often present a nonlinear
structure, the manifold learning method is applied to construct a manifold spatial structure, which preserves the
global geometric properties of complex high-dimensional data and improves the clustering effect of the algorithm
on complex high-dimensional datasets. Fowlkes-Mallows Index (FMI), the weighted average of homogeneity and
completeness (V-measure), Adjusted Mutual Information (AMI), and Adjusted Rand Index (ARI) are used as
performance measures of clustering algorithms. The experimental results show that the manifold learning method
is the superior distance measure, and the algorithm improves the clustering accuracy and performs superiorly in
the clustering of low-dimensional and complex high-dimensional data.
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1 Introduction

Clustering is an unsupervised learning process that divides an unlabeled dataset into a number
of un-known labeled clusters [1]. Clustering algorithms are commonly used in many fields such as e-
commerce, image segmentation, medical diagnosis, and emotion analysis [2–6]. Clustering algorithms
are classified into five types based on different learning strategies such as division, constraint,
hierarchy, density, and grid. Fuzzy C-Means algorithms belong to the division-based clustering type,
which utilizes membership to determine the degree of subordination of each data object to a certain
class cluster [7]. The Fuzzy C-Means algorithm has been commonly used because of its simplicity and
flexibility and efficient clustering. However, the traditional FCM algorithm is sensitive to the initial
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cluster center. Furthermore, Euclidean distance is only suitable for global linear structure data, and
complex high-dimensional data often present nonlinear structure.

Many improvement algorithms have been proposed to address the shortcomings of Fuzzy C-
Means. Several researchers [8–10] improved the Fuzzy C-Means algorithm using the meta-heuristic
algorithm to overcome the high dependence on initial cluster centers. Liu et al. [11] combined the
density peaking algorithm with the Fuzzy C-Means algorithm to improve the convergence ability and
clustering accuracy of the Fuzzy C-Means algorithm. Bei et al. [12] combined the grey correlation and
weighted distance method to improve the accuracy of clustering results. Chen et al. [13] presented
a weight parameter-based method to improve the Fuzzy C-Means of likelihood fuzziness, which
has good performance in processing noisy data. Liu et al. [14] introduced feature reduction and
incremental strategies to process large-scale data clustering. Cardone et al. [15] proposed the Shannon
fuzzy entropy function to assign weights to attain clustering centers, which improves the clustering
performance of the FCM algorithm. The combination of Minkowski distance and Chebyshev distance
is introduced as a similarity measure for the FCM algorithm to improve the clustering accuracy by
Surono et al. [16]. Zhang et al. [17] combined do-main information constraints and deviated sparse
Fuzzy C-Means to obtain clustering centers, which im-proved the clustering efficiency. Tang et al. [18]
combined a novel membership model based on rough sets [19,20] and an inhibitive factor with the
FCM algorithm, which improved the convergence speed and reduced the influence of cluster edge
noise data. Gao et al. [21] proposed a Gaussian mixture model and collaborative technique to solve
the clustering problem of non-spherical data sets in the Fuzzy C-Means algorithm. In addition,
fuzzy clustering algorithms are used in a wide range of real-world applications. Deveci et al. [22]
proposed a hybrid model based on q-rung orthopair fuzzy sets (q-ROFSs) which is applied as a guide
for decision-makers of the metaverse when integrating autonomous vehicles into the transportation
system. Alharbi et al. [23] proposed a hybrid approach based on dictionaries and fuzzy inference
process (FIP), which uses a fuzzy system to identify textual sentiment while solving the problem
of sentiment analysis. Alsmirat et al. [24] applied the Fuzzy C-Means to the image seg-mentation
algorithm, which uses the graphics processing unit (GPU) function to speed up the execution time
of the algorithm.

The above methods have limitations because the actual data sets often present complex high-
dimensional nonlinear structures. In addition, the number of clusters and random cluster center
selection has a significant impact on the clustering accuracy of the FCM algorithm. Therefore, more
representative initial cluster centers are required to select. Fusing the local dissimilarity of the dataset
with the global dissimilarity gives better feedback for the original distribution of the dataset. In this
paper, the density Canopy algorithm is applied to the Fuzzy C-Means algorithm for the first time
and improves the calculation of local density. The improved density Canopy algorithm automatically
selects the appropriate initial cluster centers, automatically determines the number of clusters, and
improves the adaptability and stability of the FCM algorithm. In addition, this paper also uses the
manifold learning method as a dissimilarity measure for the clustering process. It can better focus
on the global geometric properties of nonlinear data and thus address the inefficiency of clustering
practical complex high-dimensional data.

For this paper, the main contributions are as follows:

(1) We optimize the objective function of the FCM algorithm by means of a distance metric based
on manifold learning. This nonlinear dimensionality reduction algorithm calculates the global
optimal solution and preserves the true structure of the data, thus improving the clustering
accuracy under complex high-dimensional data.
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(2) We have improved the density Canopy algorithm so as to better adapt to data with different
density distributions. The improved density Canopy algorithm automatically determines the
number of clusters and picks the appropriate initial cluster centers, which improves the
adaptiveness and stability of the FCM clustering algorithm.

(3) We validate the comprehensive effectiveness of the DM-FCM algorithm on various datasets
(7 artificial datasets and 7 UCI datasets), demonstrate that the manifold learning method
is a superior distance metric, and verify higher effectiveness in clustering complex high-
dimensional data.

2 Fuzzy C–Means Algorithm

2.1 Principle of Fuzzy C-Means Algorithm

Given a dataset X = {x1, x2, . . . , xn}, the Fuzzy C-Means algorithm utilizes the membership
degree uij to represent the probability of the data object xj belonging to cluster ci, assigns xj to the
corresponding cluster with the largest membership degree, and iteratively calculates to finally obtain
k clusters. The objective function of the Fuzzy C-Means algorithm is shown in Eq. (1), where m is the
fuzzy constant (generally m = 2), and ‖ xj − ci ‖ represents the distance between data object xj and
the cluster center ci.

J =
k∑

i=1

n∑
j=1

um
ij ‖xj − ci‖2 (1)

The detailed steps of the Fuzzy C-Means algorithm are as follows:

Step 1: Determine the number of clusters k, and then determine initial cluster centers.

Step 2: Compute the membership degree according to Eq. (2)

uij = 1
c∑

k=1

(
xj−ci

xj−ck

) 2
m−1

(2)

Step 3: Compute the cluster center according to Eq. (3)

ci =
n∑

j=1

um
ij

n∑
j=1

um
ij

xj (3)

Step 4: If ‖J (t) − J (t+1)‖ > ε, return to Step 2 for repetition; otherwise, the algorithm ends.

2.2 Problems with Fuzzy C-Means Algorithm

The Fuzzy C-Means algorithm manually selects the number of clusters as the input parameter
affecting its adaptiveness. In addition, the randomly selected initial cluster centers affect the stability
of the algorithm. The Fuzzy C-Means algorithm utilizes the Euclidean distance as a distance measure,
but the high-dimensional space often presents a nonlinear structure, and it is difficult to calculate
the global consistency of the dataset by directly calculating the linear distance. To address the above
problems, the FCM clustering algorithm that integrates manifold learning and density Canopy based
on improved local density is proposed, using the density Canopy algorithm for pre-clustering, which
automatically finds the appropriate initial cluster centers without the tedious step of manually selecting
cluster centers. Meanwhile, manifold learning is used as the distance measure, and this global nonlinear
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manifold learning method preserves the global consistency of the high-dimensional nonlinear space
and improves the clustering accuracy of high-dimensional data.

3 Density Canopy Algorithm

3.1 Related Concepts

Given a dataset D = {x1, x2, . . . , xn}, the data object xi in D is noted as xi = {xi1, xi2, . . . , xid}. where
xit represents the tth dimensional feature of the ith data object, and dij is the distance between the data
objects xi and xj.

Definition 1 MeanD (D) is the average distance of all data objects in dataset D:

MeanD (D) = 2
n (n − 1)

n∑
i=1

n∑
j=i+1

dij (4)

Definition 2 The distance between other data objects and data object xi is less than MeanD (D),
thus forming a cluster, and the number of data objects in the cluster is local density ρi:

ρi =
n∑

j=1

f
[
dij − MeanD (D)

]
(5)

where f (x) =
{

1, x < 0
0, x ≥ 0

Definition 3 The average distance of all data objects in the cluster:

ai = 2
ρi (ρi − 1)

ρi∑
i=1

ρi∑
j=i+1

dij (6)

Definition 4 If there are other data objects xj with a larger density value than the data object xi,
The inter-cluster distance si is the minimum value in the distance set of the data objects xj with larger
local density values. If the local density value of data object xi is the maximum value in the dataset,
then The inter-cluster distance si is the maximum value in the set of dissimilarities of data object xj

with smaller local density values.

si =

⎧⎪⎨
⎪⎩

min
(
dij

)
xj : ρj>ρi

, ∃j, ρj > ρi

max
(
dij

)
xj∈D

, ∀j, ρj < ρi
(7)

Definition 5 The weight ωi of the cluster center of the data object, where the density value ρi

indicates the compactness degree between data objects in the cluster where this data object is located.
The smaller the value ai is, the more compact the data object in this cluster is and the smaller the
distance the data object in this cluster is. si indicates the distance between this data object and other
clusters.

ωi = ρi ∗ 1
ai

∗ si (8)

3.2 Algorithm Flow

The Density Canopy algorithm selects the data with the highest density value as the first cluster
center and removes data with a distance less than MeanDist (D) from this cluster center. Then the
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data with the highest cluster center weight is selected as the next cluster center, and the data with a
distance less than MeanDist (D) from this cluster center is removed. Iterate until the data set is empty
to attain the set of cluster centers. The density Canopy algorithm solves the problem that the Canopy
algorithm needs to manually input the parameter thresholds in advance and the parameter thresholds
are difficult to determine. It adaptively calculates the truncation distance threshold and improves the
adaptability and stability of the Canopy algorithm.

Density Canopy Algorithm

Input: Dataset D

Output: Initial cluster center C (0)

Step 1: Use Eq. (4) to obtain MeanDist (D), use Eq. (5) to obtain the density ρi of each data,
obtain the first cluster center by selecting the data with the highest density in the dataset, and add the
cluster center c1 to the cluster center set, so C (0) = {c1}. Then delete the remaining data objects with a
distance less than MeanDist (D) to the first cluster center.

Step 2: According to the Eqs. (5)–(7), the ρi, ai, and si of the remaining data objects are calculated,
and then the cluster center weights ωi are obtained from the Eq. (8), and the next cluster center c2

is obtained by selecting the data with the largest cluster center weight value, and adding it to the set
of cluster centers C (0) = {c1, c2}. The data objects with a distance less than MeanDist (D) among the
remaining data objects in the data set are deleted.

Step 3: Repeat step 2 until dataset D is empty.

Step 4: Redetermine the cluster center of each cluster. Iterate through the data objects of each
cluster, calculate the distance between the data object and other data objects in this cluster, and
obtain the cluster center of this cluster by selecting the data with the smallest sum of distance in this
cluster C (0)

i .

4 FCM Algorithm Based on Density Canopy and Manifold Learning

4.1 Distance Measurement Based on Manifold Learning Principle

The distance measure of the Fuzzy C-Means algorithm is based on the Euclidean distance, but
as the data dimension of the dataset grows, it is difficult to calculate the linear distance in the high-
dimensional space to measure the global consistency of the dataset. The basic principle of the manifold
learning algorithm is to introduce the K-nearest neighbor idea to calculate the geodesic distance
between each data object. For nearest neighbor data objects, Euclidean distance is used as their
geodesic distance. For non-nearest neighbor data objects, the nearest neighbor graph is constructed
and the shortest path algorithm is used to calculate the shortest path between data objects as the
geodesic distance, and multidimensional scaling (MDS) is used to reduce the dimensionality to obtain
the dissimilarity matrix in the low-dimensional space. The manifold learning method is a global
nonlinear dimensionality reduction algorithm, which approximates the geometric structure of data
objects in high-dimensional space by constructing a nearest neighbor graph, preserving the global
geometric properties of high-dimensional manifold data.

Manifold learning algorithm flow is as follows:

Input: dataset X = {
x1, x2, . . . , xn ∈ RN

}
, number of neighbors K, reduced dimension d

Output: low-dimensional embedding coordinates Y = {
y1, y2, . . . , yn ∈ Rd

}
Step 1: Construct the K-nearest neighbor graph G
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Since the manifold is locally homogeneous with the Euclidean space, a nearest-neighbor con-
nectivity graph is constructed for each data object by finding its nearest-neighbor points, in which
there are connections between nearest-neighbor objects but not between non-neighbor objects. Then,
the nearest neighbor connection graph is used to compute the shortest path between any two data
objects, which approximates the geodesic distance on the low-dimensional embedded manifold. The
K-nearest neighbor method is used to connect each data object with its k nearest data objects, construct
a weighted K-nearest neighbor graph G, and calculate the path weights between the nearest K data
objects, the path weight of each edge in the K-nearest neighbor graph G is dE (i, j), dE (i, j) represents
the Euclidean distance between data object xi and data object xj.

Step 2: Compute the shortest path (Dijkstra’s algorithm)

Calculate the geodesic distance of any two data objects in the high-dimensional space. If data
objects xi and xj are connected in graph G, the initial value of the shortest path between them is
dG (i, j) = dE (i, j), otherwise it is dG (i, j) = ∞. Let q = 1,2,...,N, where N is the total number of
data objects, and the calculation method of the geodesic distance is shown in Eq. (9).

dG (i, j) = min {dG (i, j) , dG (i, q) + dG (q, j)} (9)

Step 3: Calculate the low-dimensional embedding coordinates

The basic idea of multidimensional scaling is to map the distances between data objects from
multidimensional space to low-dimensional space by matrix transformation, and to obtain low-
dimensional coordinates that maintain the global geometric properties of the internal manifold by
minimizing the objective function Eq. (10).

where DY denotes the distance matrix
{
dY (i, j) = ||yi − yj||

}
of the low-dimensional embedded coor-

dinates, ||A||L2 =
√∑

ij A2
ij is the L2 matrix parametrization, the matrix operation operator τ (D) =

−HSH/2, S is the matrix
{
Sij = D2

ij

}
composed of distance squares, and H represents the centralized

matrix
{
Hij = δij − 1/N

}
. λp is the pth eigenvalue of τ (DG) and vp is the corresponding eigenvector of

λp. When Y is the eigenvector corresponding to the d largest eigenvalues of M, then N and Eq. (10)
reaches the global minimum.

E = ‖τ (DG) − τ (DY)‖L2 (10)

4.2 Density Canopy Algorithm Based on the Improved Local Density

The density Canopy algorithm ignores the nonlinear space and inhomogeneous density distri-
bution among the actual data objects. In order to improve the adaptability of the density Canopy
algorithm to different density distributions, the density Canopy algorithm based on the improved
local density is proposed. The improved local density method first calculates the average manifold
distance as the neighborhood distance, then calculates the number of data objects that are within the
neighborhood distance from the data objects, and finally calculates the sum of the distance of data
objects within the neighborhood distance. The relationship between the number of data objects and
the sum of distances within the fused neighborhood distance results in a high similarity between data
objects in the high-density distribution and a low similarity between data objects in the low-density
distribution, thus improving the differentiation between clusters. The local density of the density
Canopy algorithm is defined as:

ρi =
n∑

j=1

[
Rijf

[
Rij − MeanD (D)

]] n∑
j=1

f
[
Rij − MeanD (D)

]
(11)
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where Rij is the manifold distance between data objects xi and xj, and MeanD(D) is the average
manifold distance.

4.3 FCM Algorithm Fusing Manifold Learning and Density Canopy

To address the problem that the Fuzzy C-Mean algorithm needs to manually determine the
number of clusters and randomly select the initial cluster centers in advance, the improved algorithm
DM-FCM uses the density Canopy algorithm to automatically determine the number of clusters and
initial cluster centers to improve the stability and self-adaptability of the FCM algorithm. To address
the problem that the Euclidean distance metric in high-dimensional space cannot take into account
the global consistency of data, the improved algorithm DM-FCM uses the manifold learning method
as the distance metric of the FCM algorithm. The global consistency of high-dimensional data objects
is preserved, thus improving the clustering quality of the FCM algorithm.

DM-FCM algorithm:

Input:

Dataset D;

number of neighbors K;

Convergence threshold: ε;

Output:

Clustering results of DM-FCM

Step 1: Determine the initial cluster center

Step 1.1 Use Eq. (11) to calculate the density ρi. Select the data with the largest density in the data
set to get the first cluster center c1, while adding to the set of cluster centers C (0) = {c1}, and then delete
the data objects in the cluster.

Step 1.2 Update ρi, calculate ai by Eq. (6), calculate si by Eq. (7).and then use Eq. (8) to calculate
the cluster center weights ωi. The data object with the largest cluster center weight value is selected as
the next cluster center ci and added to the cluster center set C (0) at the same time, and the data objects
within the cluster are then deleted.

Step 1.3 Repeat step 1.2 until the dataset D is empty.

Step 1.4 Redetermine the cluster centers of each cluster. The data object with the smallest sum of
manifold distances in each cluster is selected as the cluster center C (0)

i .

Step 2: Execute the FCM algorithm

Step 2.1 Initialize the iteration number t = 0.

Step 2.2 The dissimilarity matrix is updated using the manifold learning method, while the
membership matrix uij

(t) is calculated according to Eq. (2).

Step 2.3 Calculate the objective function value J (t) according to Eq. (1).

Step 2.4 Update the set of cluster centers C (t+1) according to Eq. (3).

Step 2.5 Update the membership matrix uij
(t+1) according to Eq. (2).

Step 2.6 Compute the objective function value J (t+1) according to Eq. (1).

Step 2.7 If ‖J (t) − J (t+1)‖ < ε, exit; otherwise t = t + 1, return to step 2.4.
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The algorithm flow is shown in Fig. 1.

Figure 1: DC-IFCM algorithm flow chart

4.4 Algorithm Time Complexity Analysis

The time complexity of this algorithm comes primarily from the time complexity of the density
Canopy algorithm and the FCM algorithm. Iterating over each data object, the time complexity
of computing the manifold neighborhood distance is O

(
n2 log n

)
, and then the time complexity of

calculating the cluster center weights is O (n). So the time complexity of the density Canopy algorithm
is O

(
n

(
n2 log n + n

))
. In addition, the time complexity of the FCM algorithm based on the manifold

learning method is O
(
n2 log n + ndc2t

)
, where d is the data dimensions, c is the number of clusters, and t

is the number of iterations. Therefore, the total time complexity of the algorithm is O
(
n3 log n + ndc2t

)
.
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5 Simulation Results

Experimental environment: The algorithm experiment uses Windows10 operating system,
Intel (R) Xeon(R) CPU E3-1225 v6 @ 3.30 GHz, 32 G memory, and Pycharm2019 simulation
software.

5.1 Experimental Data

To verify the effectiveness of the DM-FCM algorithm, the experiment compares the DM-FCM
algorithm with the FCM algorithm, Canopy-FCM algorithm, Single Pass Fuzzy C Means (SPFCM)
algorithm, clustering by fast search and finding of density peaks (CFSFDP) algorithm and Weight
Possibilistic Fuzzy C-Means Clustering Algorithm (WPFCM). Seven artificial datasets and seven
high-dimensional UCI datasets were used for the experiments, and the information of the datasets
is shown in Table 1.

Table 1: Information about the dataset

Type Dataset Size Attribute Cluster

Artificial dataset

Compound 399 2 6
smile1 1000 2 4
Aggregation 788 2 7
Target
Impossible
Cassini
Pmf

770
3673
1000
649

2
2
2
3

6
7
3
5

UCI dataset

Seed 210 7 3
Pima 768 8 2
Ionosphere 351 34 2
biodeg 1055 41 2
Waveform
Bcw
Ecoli

5000
699
332

40
9
7

3
2
8

5.2 Clustering Evaluation Indexes

To evaluate the clustering performance, FMI, V-measure, AMI (Adjusted Mutual Information),
and ARI are used as the performance measures of the clustering algorithm.

The FMI is defined as follows, the larger the FMI, the higher the clustering validity, where TP
denotes the number of sample pairs that belong to the same cluster in both true label and clustering
results, FP denotes the number of sample pairs that belong to the same cluster in true label and do not
belong to the same cluster in clustering results, and FN denotes the number of sample pairs that do
not belong to the same cluster in true labels and belong to the same cluster in the clustering results.

FMI = TP√
(TP + FP) (TP + FN)
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AMI is defined as follows. The larger AMI, the higher the clustering validity. where U is the true
label, H(U) is the entropy of U, V is the clustering result, H(V) is the entropy of V, and MI(U, V) is
the mutual information of U and V.

AMI (U , V) = MI (U , V)√
H (U) H (V)

ARI is defined as follows. The larger the ARI, the higher the clustering validity, where RI is the
Rand coefficient, E[RI] is the expected value of RI, and max(RI) is the maximum value of RI.

ARI = RI − E [RI ]
max (RI) − E [RI ]

V-measure is defined as follows. The larger the V-measure, the higher the clustering validity.

V − measure = (1 + β) × homogeneity × completeness
(β × homogeneity + completeness)

5.3 Comparison and Analysis of Distance Measurement Methods

Since the Euclidean distance used in the high-dimensional data algorithm is difficult to deal with
the dimensional catastrophe caused by complex high-dimensional data, three distance measures of
Euclidean distance, Gaussian kernel function, and manifold learning are used to experiment with the
FCM algorithm based on density Canopy. The experiments apply FMI as the performance measure
of each distance metric, and the experimental results are shown in Table 2.

Table 2: FMI values of three distance measurement methods

Dataset Manifold learning Euclidean distance Gaussian kernel

Compound 0.8171 0.8138 0.4376
smile1 0.7210 0.7203 0.6474
Aggregation 0.7819 0.7627 0.7385
Target
Impossible
Cassini
Pmf

0.7923
0.6325
0.8013
0.9734

0.5292
0.6319
0.8012
0.9666

0.3479
0.5795
0.4397
0.8172

Seed 0.8555 0.7866 0.6885
Pima 0.6092 0.5890 0.5396
Ionosphere 0.5759 0.5509 0.5787
biodeg 0.5997 0.5653 0.4985
Waveform
Bcw
Ecoli

0.6313
0.9029
0.7812

0.6254
0.8709
0.6629

0.6293
0.9340
0.5334

From the experimental results, it can be seen that Gaussian kernel function shows better FMI
performance on data set Ionosphere and Bcw than Euclidean distance and manifold learning methods.
However, in other cases, the manifold learning methods perform better in the FMI performance
measures compared to the Euclidean distance and Gaussian kernel function, and the Gaussian kernel
function performs worse in the FMI performance measures overall. In the seven low-dimensional
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artificial datasets, the manifold learning method improved the FMI performance metric by an average
of 4.2% compared to the Euclidean distance and by an average of 21.99% compared to the Gaussian
kernel function in the FMI performance metric. The distance measures of the manifold learning
methods in the seven UCI high-dimensional datasets improve the FMI performance measures by an
average of 4.35% compared to the Euclidean distance and by an average of 7.91% compared to the
Gaussian kernel function. It can be seen that the Euclidean distance is still applicable in the clustering
of high-dimensional data but it is not the optimal distance measure, and the manifold learning method
is more suitable for clustering of high-dimensional data than the Euclidean distance and Gaussian
kernel function.

5.4 Experiments on Artificial Dataset

The performance of DM-FCM, FCM, Canopy-FCM, SPFCM, and CFSFDP on the seven
artificial datasets are listed in Table 1. The clustering visualization results are shown in Figs. 2–8.
DM-FCM algorithm can find out the suitable number of clusters and have better clustering effect
in data with uneven density distribution, which also proves the effectiveness of improving local
density in density Canopy algorithm. Canopy-FCM algorithm cannot find out the suitable number
of clusters, but can roughly identify the class boundaries. SPFCM algorithm and FCM algorithm
can complete a part of clustering, but The CFSFDP algorithm has the worst clustering effect. The
visualization experimental results from Figs. 2–8 show that the DM-FCM algorithm has optimal
clustering performance compared with other improved algorithms.

Figure 2: Clustering results of clustering algorithms on dataset compound
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Figure 3: Clustering results of clustering algorithms on dataset smile1

Figure 4: Clustering results of clustering algorithms on dataset aggregation



CSSE, 2023 13

Figure 5: Clustering results of clustering algorithms on dataset target

Figure 6: Clustering results of clustering algorithms on dataset impossible
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Figure 7: Clustering results of clustering algorithms on dataset cassini

Figure 8: Clustering results of clustering algorithms on dataset Pmf

The DM-FCM algorithm improved the AMI performance metric by an average of 10.8%, the
ARI performance metric by an average of 12.23%, and the V-measure performance metric by an
average of 7.19% compared to FCM in the seven manual datasets. The average improvement in
AMI performance metric, ARI performance metric, and V-measure performance metric is 11.18%,
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16.57%, and 11.16%, respectively, compared to Canopy-FCM. DM-FCM has an average improvement
of 10.73% in AMI performance measures, 11.5% in ARI performance measures, and 10.58% in V-
measure performance measures compared to SPFCM. DM-FCM has an average improvement of
8.85% in AMI performance metrics, 29.36% in ARI performance metrics, and 8.36% in V-measure
performance metrics compared to CFSFDP. The average improvement in AMI performance metric,
ARI performance metric, and V-measure performance metric is 1.78%,3.69%, and 1.59%, respectively,
compared to WPFCM. From the experimental results in Tables 3–5, it can be seen that the DM-FCM
algorithm is the best in AMI, ARI, and V-measure performance measures compared to the Canopy-
FCM algorithm, FCM algorithm, SPFCM algorithm, CFSFDP algorithm and WPFCM algorithm,
and is superior in clustering of low-dimensional artificial datasets.

Table 3: AMI values of clustering algorithms on artificial data sets

Dataset DM-FCM FCM Canopy-FCM SPFCM CFSFDP WPFCM

Compound 0.7627 0.6887 0.7524 0.7062 0.7153 0.7421
Smile1 0.6628 0.6062 0.4757 0.6194 0.6445 0.6871
Aggregation 0.8069 0.7360 0.5681 0.7486 0.7337 0.7814
Target
Impossible
Pmf
Cassini

0.6310
0.6803
0.9253
0.6352

0.5641
0.6388
0.8658
0.4932

0.4993
0.6386
0.7524
0.6350

0.1244
0.6633
0.9087
0.5827

0.4377
0.6752
0.7840
0.4942

0.5963
0.6503
0.8972
0.6253

Table 4: ARI values of clustering algorithms on artificial data sets

Dataset DM-FCM FCM Canopy-FCM SPFCM CFSFDP WPFCM

Compound 0.7211 0.5268 0.7166 0.6568 0.4689 0.6974
Smile1 0.5993 0.5460 0.3318 0.5760 0.5712 0.5608
Aggregation 0.7230 0.5710 0.4214 0.6953 0.4218 0.7053
Target
Impossible
Pmf
Cassini

0.6347
0.6053
0.9579
0.6401

0.3839
0.5896
0.9096
0.4982

0.3602
0.4674
0.7842
0.6400

0.0404
0.5264
0.9510
0.6305

0.2038
0.3739
0.6194
0.1674

0.6201
0.5935
0.9168
0.5290

Table 5: V-measure values of clustering algorithms on artificial data sets

Dataset DM-FCM FCM Canopy-FCM SPFCM CFSFDP WPFCM

Compound 0.7650 0.6949 0.7548 0.7102 0.7236 0.7941
smile1 0.6636 0.6075 0.4765 0.6207 0.6463 0.6518
Aggregation 0.8088 0.7394 0.5695 0.7513 0.7445 0.7672
Target
Impossible
Pmf
Cassini

0.6360
0.6812
0.9259
0.6356

0.5700
0.6398
0.8672
0.4942

0.5055
0.6390
0.7539
0.6354

0.1355
0.6641
0.9095
0.5844

0.4491
0.6797
0.7866
0.5013

0.6176
0.6689
0.9107
0.5947
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5.5 Experiments on the UCI Dataset

The experimental results in Tables 6–8 show that the DM-FCM algorithm has the best clustering
performance in the six high-dimensional UCI datasets for the AMI, ARI, and V-measure performance
measures. the DM-FCM algorithm improves on average by 7.85% in the AMI performance measure,
12.78% in the ARI performance measure, and 6.42% in the V-measure performance measure compared
to the FCM algorithm. The DM-FCM algorithm improves the AMI performance metric by 7.06%,
the ARI performance metric by 14.53%, and the V-measure performance metric by 6.18% on average
compared to the Canopy-FCM algorithm. The DM-FCM algorithm improves the AMI performance
metric by an average of 6.86%, the ARI performance metric by an average of 7.9%, and the V-
measure performance metric by an average of 6.04% compared to the SPFCM algorithm. The DM-
FCM algorithm improves on average by 16.7% in the AMI performance metric, 28.83% in the ARI
performance metric, and 15.66% in the V-measure performance metric compared to the CFSFDP
algorithm. the DM-FCM algorithm improves on average by 1.77% in the AMI performance measure,
2.55% in the ARI performance measure, and 1.25% in the V-measure performance measure compared
to the WPFCM algorithm. Thus, the DM-FCM algorithm performs superiorly in clustering high-
dimensional data.

Table 6: AMI values of clustering algorithms on UCI data sets

Dataset DM-FCM FCM Canopy-FCM SPFCM CFSFDP WPFCM

Seed 0.7365 0.6109 0.5686 0.5663 0.5457 0.6872
Pima 0.1325 0.0764 0.0830 0.1254 0.0257 0.1409
Ionosphere 0.1708 0.0702 0.1167 0.0927 0.1580 0.1697
Biodeg 0.1452 0.1033 0.1033 0.0621 0.0589 0.1164
Waveform
Bcw
Ecoli

0.3724
0.6688
0.6415

0.3150
0.5977
0.5445

0.3238
0.5769
0.6015

0.3547
0.6108
0.5757

0.2388
0.2981
0.3734

0.3621
0.6358
0.6319

Table 7: ARI values of clustering algorithms on UCI data sets

Dataset DM-FCM FCM Canopy-FCM SPFCM CFSFDP WPFCM

Seed 0.6772 0.5691 0.4260 0.6099 0.4122 0.6449
Pima 0.1785 0.1234 0.0974 0.1576 0.0338 0.1538
Ionosphere 0.2189 0.1097 0.0029 0.1230 0.1205 0.1938
Biodeg 0.1565 0.0318 0.0318 0.0945 0.0416 0.1391
Waveform
Bcw
Ecoli

0.3643
0.7809
0.6821

0.2344
0.6992
0.3963

0.2489
0.6958
0.5385

0.2804
0.7358
0.5043

0.0528
0.1688
0.2104

0.3507
0.7601
0.6375

5.6 Experiments on Runtime

The running times of the 6 algorithms on 14 datasets were compared and the experimental results
are shown in Table 9. Taking the running time of Compound on 6 algorithms as an example, the
running time of DM-FCM algorithm on Compound dataset is 0.8553, and the algorithm with the
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lowest running time among the other comparison algorithms of non-FCM algorithms that is MD-
FCM algorithm. The overall running time of DM-FCM is moderate compared to the other com-
parison algorithms because the MD-FCM algorithm requires adaptive selection of initial clustering
centers using the density Canopy algorithm and optimization of the objective function using manifold
learning, which increases the algorithm’s processing time for the dataset. From the running time of the
six algorithms on 14 datasets and the clustering effect of the algorithms, it is clear that the DM-FCM
algorithm does not have the best average running time compared to the other compared algorithms,
but it performs significantly in improving the clustering effect.

Table 8: V-measure values of clustering algorithms on UCI data sets

Dataset DM-FCM FCM Canopy-FCM SPFCM CFSFDP WPFCM

Seed 0.6895 0.6528 0.5759 0.5701 0.5548 0.6794
Pima 0.1334 0.0773 0.0874 0.1262 0.0311 0.1529
Ionosphere 0.1736 0.0722 0.1198 0.0946 0.1653 0.1698
Biodeg 0.1444 0.1040 0.1040 0.0627 0.0619 0.1176
Waveform
Bcw
Ecoli

0.3725
0.6692
0.6500

0.3153
0.5981
0.5633

0.3241
0.5777
0.6110

0.3550
0.6112
0.5902

0.2452
0.3040
0.3739

0.3703
0.6365
0.6187

Table 9: Time cost of clustering algorithms on datasets

Dataset DM-FCM Canopy-FCM SPFCM CFSFDP FCM WPFCM

Compound
smile1
Aggregation
Target
Impossible
Pmf
Cassini

0.8553
4. 0797
3.8461
11.7744
49.7139
8.2479
4.5144

1.0401
0.1754
4.3864
9.7770
0.4189
0.1646
0.1466

0.9716
1.1158
2.1126
1.1157
4.5883
2.1999
1.1097

0.8767
5.6539
3.5199
3.4587
74.9742
7.2092
6.0159

0.8068
0.4328
2.8344
9.8318
6.8457
0.4917
1.4431

0.8816
0.9172
2.2917
1.4862
4.7385
6.1674
1.7437

Seed 0.8710 0.3377 0.4221 0.2613 0.0469 0.6718
Pima 2.4827 1.8300 0.8758 3.3981 0.4977 2.4891
Ionosphere 1.3534 0.3639 1.3871 0.9306 0.0389 0.9726
Biodeg 5.3140 1.1486 2.1476 4.5603 0.3471 1.7162
Waveform
Bcw
Ecoli

37.020
1.3291
0.8757

1.8611
0.3850
0.9820

1.5006
0.7203
0.6826

63.6352
3.3111
3.4368

2.1834
0.0519
0.9046

1.3842
0.2671
0.8945

6 Conclusions

To address the problem that the FCM algorithm easily falls into the local optimal solution
and needs to determine the number of clusters in advance, the density Canopy algorithm based on
improved local density is proposed to determine the number of clusters and initial cluster centers
automatically. In addition, the actual complex high-dimensional data clustering becomes difficult
in the era of big data, so manifold learning is introduced as the distance measure to optimize the
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clustering process. And the application of these methods is new and no researcher has combined
these two methods before. The experimental results show that the DM-FCM algorithm produces very
good clustering results on low-dimensional and high-dimensional data clustering without manually
determining the number of clusters. Therefore, DM-FCM algorithm is more adaptive and stable, closer
to the real structure of the manifold data distribution, and has better overall performance compared
to the traditional FCM algorithm. Nevertheless, the computation time of this algorithm is long when
dealing with large data sets, and how to decrease the computational complexity of the algorithm
becomes the research direction of future work. The DM-FCM algorithm proposed in this paper has
a wide range of applications in the research field of computer vision and image recognition. How to
use the DM-FCM algorithm to improve the efficiency of practical applications in image processing is
a problem that needs further research.
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