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ABSTRACT

Path-based clustering algorithms typically generate clusters by optimizing a benchmark function. Most optimiza-
tion methods in clustering algorithms often offer solutions close to the general optimal value. This study achieves
the global optimum value for the criterion function in a shorter time using the minimax distance, Maximum
Spanning Tree “MST”, and meta-heuristic algorithms, including Genetic Algorithm “GA” and Particle Swarm
Optimization “PSO”. The Fast Path-based Clustering “FPC” algorithm proposed in this paper can find cluster
centers correctly in most datasets and quickly perform clustering operations. The FPC does this operation using
MST, the minimax distance, and a new hybrid meta-heuristic algorithm in a few rounds of algorithm iterations.
This algorithm can achieve the global optimal value, and the main clustering process of the algorithm has a
computational complexity of O (k2 X n) . However, due to the complexity of the minimum distance algorithm, the
total computational complexity is O (n?). Experimental results of FPC on synthetic datasets with arbitrary shapes
demonstrate that the algorithm is resistant to noise and outliers and can correctly identify clusters of varying sizes
and numbers. In addition, the FPC requires the number of clusters as the only parameter to perform the clustering
process. A comparative analysis of FPC and other clustering algorithms in this domain indicates that FPC exhibits
superior speed, stability, and performance.
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1 Introduction

This section provides a brief overview of evolutionary algorithms and meta-heuristic optimization
algorithms. A hybrid and evolutionary algorithm is utilized in this article to determine the overall
optimal value during the clustering process. Then, an overview of several clustering methods used in
this field and an introduction to the data clustering procedure will be followed.

In computational theory, problems can be categorized into two main classes: P and NP. The
computational complexity of class P problems can be solved with a deterministic algorithm in
polynomial time. Then it is relatively easy to solve. However, the complexity class of NP can be solved
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by a nondeterministic algorithm in polynomial time. Most real-world optimization problems and
many prevalent academic problems are NP-hard. Routing and covering problems and data clustering
problems are some cases of NP-hard problems [1]. For NP-Hard class problems, a provable and
deterministic algorithm cannot be found in polynomial time. Therefore, using meta-heuristics and
hybrid algorithms can be suitable for solving such problems.

A meta-heuristic is an iterative generation process that guides a subordinate heuristic by combin-
ing intelligently different concepts for exploring and exploiting the search space. Learning strategies
structure information and find near-optimal solutions efficiently. Meta-heuristics are divided into two
categories, including single-based and population-based meta-heuristics. Evolutionary algorithms are
considered one type of population-based meta-heuristics.

An evolutionary algorithm (EA) uses mechanisms inspired by nature and solves problems through
processes that emulate the living organism’s behaviors. EAs are inspired by the concepts in Darwinian
evolution [1]. GA [2], PSO [3] and ACO [4] algorithms, widely used in solving optimization problems
in different fields, are among the evolutionary algorithms proposed in the field of solving optimization
problems. When addressing optimization problems, evolutionary algorithms aim to reach the optimal
value more rapidly and with reduced computational complexity. Comparing the performance of
Cluster Chaotic Optimization and Multimodal Cluster-Chaotic Optimization algorithms to that of
eleven evolutionary optimization algorithms in the context of clustering has yielded favorable results
in polynomial time [5]. However, the focus of these algorithms has been only on reaching the best
general optimal value.

This paper present a hybrid population-based meta-heuristic algorithm to address the NP-Hard
data clustering problem. FPC aims to achieve the general optimal value in the data clustering process
while reducing the computational complexity and increasing the algorithm execution speed. The
computational complexity of this algorithm is about O (k2 X n).

Clustering is the process of dividing a dataset into multiple subsets that do not overlap. These
subsets are called clusters. Clusters can be defined qualitatively as collections of objects within a
dataset that possess higher densities within a given cluster than others [6]. Clustering is widely used
in various fields, including data mining, image segmentation, computer vision, and bioinformatics.
There is a wide range of clustering algorithms. Zhong et al. [7] divided these algorithms into six
groups: Hierarchical Clustering, Segmentation Clustering [8], Density-based Clustering [9], grid-based
clustering, model-based clustering and graph-based clustering. Clustering is an unsupervised learning
issue. Unlike classification algorithms, clustering algorithms have no prior knowledge of class labels.
Therefore, learning clustering is usually based on dissimilarity, directly affecting the clustering process.

In most cases, the Euclidean metric cannot measure the contrast between objects. The Minimax
distance also emphasizes the connection of objects through intermediate elements relative to the
mutual similarity of the elements [10]. This metric gives better clustering results when extracting
arbitrary clusters in the dataset [10]. For this reason, the proposed algorithm in this paper is based on
the minimax distance. The minimum spanning tree (MST) is essential in assessing complex networks’
dynamic and topological properties. This is an important component in the conversion of weighted
graphs that has been addressed in several studies. A unique path in MST for the entire dataset from
vertex X to vertex y is the minimax distance from x to v [11]. Therefore, minimax distance-based
clustering algorithms can also be called MST-based clustering algorithms. Such algorithms begin
with creating a minimum spanning tree (MST) from a given weighted graph. Subsequently, the tree
is divided into different clusters by removing incompatible edges. A known problem with MST-based
clustering algorithms is that they are noise-sensitive. Fischer and Buhmann proposed a path-based
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clustering algorithm using a cumulative optimization method based on a criterion function [10]. Their
method is resistant to such noises, but their optimization method offers only a solution close to the
general optimization, potentially leading to undesirable results. Finding an efficient algorithm for
correctly clustering all patterns and datasets is difficult, so the clustering optimization problem is
known as an NP-hard problem. By analyzing the minimax distance, we conclude that for every object x
outside the C cluster, x has an equal distance to every object in the C cluster. Based on this conclusion,
it can be understood that the centres of the clusters have the least density in their cluster. This theorem
is one of the important components of the proposed algorithm, which will be described in Section 3.
This algorithm can reach the general optimal value with computational complexity O(n?).

The rest of the paper is organized as follows: The next section briefly introduces some MST-
based clustering algorithms. Section 3 describes the proposed algorithm in detail and calculates its
computational complexity. Section 4 also includes experimental results of this algorithm in terms
of performance and execution time, which will be compared with some of the proposed clustering
algorithms. The final section will also include a summary and conclusion.

2 Related Works

The relevant research in the field of data clustering is reviewed in this section. As the paper’s topic is
the presentation of a path-based clustering algorithm, this section provides an overview of path-based
clustering algorithms and MST.

One of the path-based clustering methods is using the minimum spanning tree, which was first
proposed by Zahn [11]. In this method, the weighted MST graph is first created from the Euclidean
metric, then the incompatible edges are removed. Ideally, these edges are the longest ones in the graph.
However, these assumptions are often overlooked in practice, and discarding these edges would not
yield an accurate clustering. In recent years, different studies have been done to provide an efficient
method for detecting incompatible edges. Furthermore, the computational complexity of the proposed
method is an important issue that must be considered. Some of these algorithms have paid particular
attention to their computational complexity in designing this decision tree [12]. Zhong et al. have
proposed a two-step MST-based clustering algorithm to reduce the sensitivity to noise and outlier
points in clustering [13]. However, this algorithm has high computational complexity and requires
many parameters. Later, Zhong et al. proposed a hierarchical split-and-merger clustering algorithm
[7]. In this work, MST was used in the splitting and merging process. The drawback of this algorithm
is its high time complexity.

In addition to the algorithms mentioned specific algorithms also compute the dissimilarity
between data pairs using MST, such as the minimax distance presented by Fischer and Buhmann
[10], defined as follows:

pePxy | 1=h<lpl

d., = min { max dp[/z],p[h+l]] (1)

However, their algorithm cannot provide the global optimum value for all datasets [14]. Mean-
while, the K-means algorithm is still one of the most widely used algorithms in clustering. This is
because of its efficiency, simplicity, and acceptable results in practical applications. However, K-means
only works well in clustering compact and Gaussian clusters and does not work well in long clusters
and those propagated in nonlinear space. The kernel K-means function was introduced to address this
problem. This method plots the data in a property space of a higher dimension defined by a nonlinear
function to enable linear separation of data. However, choosing a suitable function and its parameters
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to cluster a data set is difficult. The results of using this method have shown that spectral clustering does
not have the traditional clustering algorithm’s problems, such as K-means [15]. Nevertheless, spectral
clustering may present the user with many customized parameters and options, such as similarity
criteria and parameters [15]. Unfortunately, the success rate of spectral clustering highly depends on
these choices, which makes it difficult for the user to use this algorithm.

Chang et al. have proposed a hybrid algorithm that uses path-based and spectral clustering
[16]. However, their algorithm has a significantly high computational complexity O (n’) because it
requires calculating eigenvector values. One algorithm that uses minimax distance is the K-medoid
algorithm, an efficient and straightforward algorithm for optimizing the criteria function. However,
this algorithm may converge to the local optimum value due to its dependence on the initial values.

Ester et al. proposed a density-based clustering algorithm (DBSCAN) [9]. This algorithm requires
two input values and can detect clusters of arbitrary shapes. This algorithm can cluster the dataset with
the time complexity O(n?). Nonetheless, requiring the user to specify two input parameters makes it
exceedingly challenging to locate suitable values for those parameters in specific datasets.

Rodriquez et al. presented an algorithm called FDPC that can cluster data with the time
complexity of O(n?) [17]. It intends to find the clusters’ centres based on point density. Thus, points
with a high density and a considerable distance from neighbouring points and points with a higher
density than adjacent points may qualify as cluster heads. The algorithm operates on a clustering
distance, denoted as d., as input. Unpredictable distribution datasets cannot be clustered using the
FDPC,; it can only detect clusters with obvious cluster centres.

Normalized Cut Spectral Clustering (NCut) is one of the clustering algorithms that perform well
in some types of clusters, including non-spherical and elongated clusters [18]. The accuracy of this
method depends on the dependency matrix [19]. Most spectral clustering algorithms use the Gaussian
kernel function as a similarity estimation method. Given this consideration, the user might encounter
challenges in determining the most advantageous value of o for the Gaussian kernel function.

One of the fastest clustering algorithms based on the minimum spanning tree is the FAST-MST
algorithm, which has a time complexity of O (n"/2 log (n)). Due to the algorithm’s extreme noise
sensitivity, points significantly distant from other points are treated as separate clusters. This problem
is one of the most well-known problems in MST-based clustering algorithms.

One of the path-based clustering algorithms is the IPC algorithm. This algorithm uses Euclidean
distance, minimum spanning tree, and minimax distance to extract the distance feature between
elements to obtain the global optimum value with the time complexity of O (n?). Another path-
based clustering algorithm is the GOPC algorithm. This algorithm requires only one input parameter
(number of clusters). This parameter can be entered either by the user or estimated by the algorithm.
The time complexity of this algorithm is faster than O (k X nz).

In this paper, a fast path-based clustering algorithm (which is called FPC) is presented. This
algorithm can achieve the global optimal value, and the primary clustering process of the algorithm has
a computational complexity of O (k2 X n). However, due to the complexity of the minimum distance
algorithm, the total computational complexity is O (nz).

3 Proposed Method

This section will explain the structure and function of the proposed path-based clustering method.
Table 1 shows the symbols used in this section. In the following, some practical theorems used in the
proposed method will be stated. The cluster center is the most central object in a cluster and is defined
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as follows:

In (X) = Zye(?(x) dx,y (2)

where C (x) is the cluster with center X, and In(x) is the sum of the distances of all objects y from the
cluster center x. If the cluster C (m) is the cluster whose center is m, we have Yx € C(m) A X # m,
which is In (m) < In (x). This expression indicates that each cluster center has a minimum value of
In(x) in its cluster. However, we cannot calculate In (x) because C (x) is unknown.

Table 1: Mathematical notations

Notations Description

X x C U indicates an active object in the set

G ¢; C Crepresents cluster i, whichis 1 <i <k
M Represents the set of cluster centers

E (M) Criteria function of cluster centers

d,, The distance between two objects x and y

Assume that there is no noise between the clusters. A unique path in MST from the x; vertex to
the x; vertex is called a minimax path from x; to x; [11]. Therefore, the minimax distance between x;
and x; is equal to the length of the longest edge in its minimax path. If the distance between x; and x;
is long enough, we reach Conclusion 1.

Conclusion 1. For any object y outside the C cluster, y has a distance equal to any object in the C
cluster. In other words:

Out (x) = Zw d.,, 3)

So, for Vx € C (m) A x # m, we have Out (m) = Out (x).

Proposition 1. Given a cluster C(m) whose center is m, Vx € C(m)A x/= m, we have p(m) < p(x),
where

p)=2"  d @)
Proof:
p)=>dy=> dy+ > dy,=1InX)+ Ou(x)
yeU yeC(x) y¢C(x)

Since: In (im) < In (x) and Out (m) = Out (x) So: In (m)+ Out (m) < In (x)+ Out (x) p (m) < p (x)
Proposition 1 shows that the centers of the clusters have the lowest density (o) in their clusters.
This theorem is used to update cluster centers.

Criteria Function: Assume that U = {x,,X,,...,X,} is characterized by minimax distance.
Clustering aims is to find a mapping ¢: U — {c;,¢,,..., ¢} Such that each object x is in one of
the k groups. In this method, the criteria function for the number of clusters k is defined as Eq. (4).

E(M)= min Z,— Zxa o ()

ml My, mk)
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This algorithm is intended to find the set of cluster centers M = (m;, m,, ..., m,) for the minimum
value of E.

3.1 Method Details

The proposed algorithm for data clustering will be described in this section. Meta-heuristic
methods have been utilized in this paper to solve the NP-hard optimization problem posed by the
criterion function. An evolutionary algorithm is proposed in this paper; it models the behavior of two
other evolutionary algorithms. By adopting this approach, the algorithm parallelizes the consideration
of multiple M sets, the number of which corresponds to the number of particles specified in the
algorithm. After completing an algorithm round and modifying the cluster centers, the criterion
function’s values are evaluated until the most optimal value is determined. Then, during the next phase
of algorithm execution, the selected M set is assumed to equal the elements of the M set containing all
particles. In the selected M, the member of M with the lowest value In(m;) is replaced by a new random
cluster center. This substitution is based on the value In(m;) of other cluster centers. The algorithm is
run with the new M values. This process is repeated until the values of In (m;) are fully balanced and
the criteria function reaches its minimum possible value. The final M set is then obtained.

3.1.1 Initialize the Values

To cluster each data set U, a few input parameters must be specified, which include the following
in this method; Number of clusters (k): The user can enter this. Number of iterations (ITR): This can
be determined by the user or algorithm itself. If selected by the algorithm, this value will be equal to
k. Number of particles (P): This value can be either by the user or automatically determined by the
algorithm. It is noteworthy to mention that this algorithm can also function with a P-value of 1 and
can produce satisfactory clustering. The likelihood of its success declines in the process of execution.
Therefore, it is necessary to choose the appropriate value to balance the accuracy and speed of the
algorithm P. It is recommended that a value of P between 1 and ITR be selected. If the algorithm
selects the value of P, it is determined based on Eq. (8).

Th
P = min (round (ﬁ + 1),max (ITR - 1, 2)) ©6)
where Thr is typically around 30, this value may vary based on the dataset’s cluster size and quantity.
The ITR represents the quantity of algorithm iterations for which the minimum value is k.

In the first round of algorithm implementation, it is necessary to determine the centers of the
clusters. Even though the algorithm’s evolution and self-correction capabilities prevent the need to
precisely identify the cluster centers in the initial round, achieving optimal values can be accelerated by
determining the relative locations of the cluster centers. This step will be described in the next section.
Once the cluster centers have been determined, the algorithm will be iteratively executed in two phases.
In the first phase, the cluster centers are updated. In the second phase, the value of the criteria function
is determined, and the cluster centers of the subsequent round for each particle are calculated using
the requirements function. This procedure will be repeated until the stipulated number of iterations
has elapsed. At the conclusion, the optimum M set is determined based on the optimum value of the
criteria function; the data are then classified based on these cluster centers. Finally, the identification
and classification of noise and outliers will occur.
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3.1.2 Initial Selection of Cluster Centers (M)

As previously stated, the evolutionary structure of this algorithm obviates the necessity for
determining the precise cluster centers in the initial round. But optimal values of the criteria function
can be obtained in less time, with fewer iterations and a smaller number of particles, by distributing
initial cluster center values across the dataset space according to the cluster centers’ relative locations.
The algorithm will only determine the appropriate number of particles and iterations if the initial
cluster centers are distributed appropriately throughout the data space. Aside from that, additional
particles and iterations will be required to achieve the ideal value. During initialization, the cluster
centers of this algorithm are allocated to different locations in the data space according to their
quantity. This distribution enables the algorithm to investigate the entire data space with fewer
iterations and particles, ultimately achieving the general optimum value.

3.1.3 Update the Cluster Centers

In this phase, the distance of each point to the cluster centers is obtained. It is obtained using
the prim algorithm’s minimax distance matrix. In the same way, the distance between all points is
calculated. This process can be calculated through algorithms such as Prim et al. [19]. The resulting
structure is referred to as the adjacency matrix. Based on the following steps, the cluster centers will
then be updated utilizing the adjacency matrix:

Stepl. First, the distance of all points with each object of the M is obtained.

Step2. Then, it is determined that each point is in which cluster using the following equation:

C (x) = argmin d,,, (7)

m;eM

Step3. Once all the points have been grouped into clusters, the value In(x) is computed for each
point using Eq. (2). Subsequently, the cluster centers are revised utilizing the subsequent equation:
m; = argmin In(x) (8)

xeCj

3.1.4 Calculating the Value of the Criteria Function and the Best Particles

The criteria function’s value, derived from Eq. (5), must be determined once the preceding
procedures have been executed individually for each particle. Several values are acquired after the value
of this function has been computed about the number of particles. The particle with the lowest value
is deemed optimal and is utilized in the algorithm’s subsequent iteration to determine the function’s
minimum value.

GBest = I,}Li;lrl(E (M),) C)]
MGBext = Margmin(E(M)pl.) ( 1 0)
pieP

Accordingly, the particle with the lowest value of the criteria function is selected as the best
particle. M set of this particle will be chosen as the M set of all particles in the next round. In other
words:

M(l't)'+l)p == MGB&\'[)V ilV (S ITR, 1 < itr < ITR,p € P (11)
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3.1.5 Selection of the Cluster Centers of the Next Round of the Algorithm

Once the GBest value and its M have been chosen as potential candidates for the subsequent
round, adjustments must be made to this set to modify specific cluster centers for the next round. The
steps are as follows: After sorting the values of In (m;), we select two cluster centers with the highest
and lowest density values for correction, respectively. To reduce the value of the criteria function,
achieving maximum balance in the density values of the clusters is imperative. By doing so, the value
of the criteria function will be decreased to the greatest extent possible, and large values of the cluster
density will be reduced. This violation may occur in certain circumstances. In these cases, the workflow
is modified by updating the cluster centers and selecting GBest, and the cluster values and centers are
optimized. The process of the algorithm in calculating the cluster centers in the next round of the
algorithm is as follows:

Stepl. First, the numbers of clusters with the highest (C,,, cluster) and lowest (C,,, cluster) cluster
density values are specified.

Step2. The C,;, cluster is then deleted. In other words, the members of this cluster will join the
nearest adjacent cluster.

Step3. Given that the number of cluster centers has decreased to k-1 clusters, there is a need to
select another cluster center. This selection is made in the following two ways:

a. Insome particles, the C,,,, cluster will split into two clusters. In this way, another cluster center
will be selected in this cluster. To do this, from points that are far from the center of the
Coax cluster (greater than the average point distance in that cluster), a point will be randomly
selected as the cluster center. The best point will be selected as the cluster center.

b. In other particles, instead of selecting the center of the new cluster in the C,,, cluster, this
selection is made in other clusters (which have a lower cluster density value than C,,,).

Once these steps have been completed, the algorithm will proceed to the repetition phase, executed
for the number of “ITR” specified in the initial step. During each round of algorithm execution, the
“BEST” value will be updated. After completing the steps and reaching the number of iterations of
the algorithm, the best cluster centers can be obtained along with the value of the criterion function
in the GUEST variable.

3.2 Algorithm Implementation

In this paper, a path-based clustering method is presented that can achieve the global optimal
value. The main clustering process of this algorithm has a computational complexity of O (k2 X n).
However due to the complexity of the minimum distance algorithm, the total computational com-
plexity is O (nz). The pseudocode of this algorithm can be seen in Algorithm 1, which consists of three
parts:

a. The first part (line 1) is the preparation phase, which calculates the minimax distance between
points. At this stage, the minimum spanning tree is created from the dataset. There are two
algorithms for generating MST: Prim and Kruskal, whose time complexities are equal to O(n?)
and O(llogn), respectively. Here 1 is the number of edges and n is the number of vertices (or
points) in the dataset. The graphs used in the clustering process are complete (i.e., | = n?). Given
the complexity of both algorithms, the prim algorithm is selected to perform the calculations.

b. In the second part (lines 6-16) most of the calculations include dividing points in the specified
clusters according to minimax distance from the cluster centers and updating them. In this part,
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the process is as follows: in lines 613, the distance of all points in the data set to the temporary
cluster centers is checked, and each point is located in its nearest cluster. Line 14 updates the
cluster centers using Eq. (8). Thus, a point within each cluster is designated as the cluster center
if its distance from other points in that cluster is the shortest. In line 15, the cluster density is
calculated using Eq. (2) for each cluster. In line 16, the function E(M) value is calculated and
obtained from the following equation.

E(M) = ZMM In(m,) (12)

c¢. In the third part (lines 17-19), the calculations include determining the cluster centers for the
next round of algorithm execution. In this section, the cluster center with the lowest cluster
density is identified and replaced by a point in a high-density cluster as Algorithm 1.

Algorithm 1: Proposed path-based clustering algorithm
Input: U as input dataset; k as the number of clusters
Output: M as the set of cluster centers

1. Algorithm:

2. Calculate the minimax distance (Prim’s algorithm)
3. Choose k initial Cluster Center Candidate.

4. M «~— {m;,m,,...,m};

5. foritr from 1to ITR do

6. for p from 1 to P do

7. fori from 1 tondo

8. mind <— d,,,,; ind <— 1;

9. for j from 2 to k do

10. if dx,,mj < mind then mind <— dx,',mj; ind <— J,
11. end if

12. end for

13. Sia <— Xi;

14. end for

15. Update M,,,;// According to Eq. (10).

16. Calculate In (M);

17. Calculate E(M); //According to Eq. (7).

18. Calculate GBest, M ;g,,; I/ According to Eqs. (11) and (12).
19. Select and Update C,,.., C,...;

20. Update M,,,;// According to lines. (17-18).
21. end for

22. end for

23. M «~— M, ;

itrp >

The rest of the calculations includ repeating these operations per number of iterations. After
completing these steps (line 22), the best cluster centers obtained are introduced as the algorithm’s
output.
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3.3 Noise and Outliers’ Problem

One of the challenges in data clustering is the management of noise and outliers. A lightweight
algorithm was used in the proposed scheme to cluster these points to overcome this problem, which is
explained in the following. After the final M set is obtained from the algorithm, the last step involves
concatenating the noise and outliers to the nearest cluster. However, it will likely be more than one
cluster with the shortest distance to a point.

In this section, the aim is to allocate these points to the nearest cluster using MST. To accomplish
this, the edges of the MST are identified and placed in an independent set, ensuring that at least one
of the vertices contains noise or an outlier. If both vertices of an edge contain noise and outliers, one
of these two vertices must be present in another edge for that edge to include more than one vertex
within the cluster. This will cluster together any noise or outliers that are close. Algorithm 2 shows
the procedure of the noise and outliers’ correction and concatenation of these points to the normal
clusters.

3.4 Computational Complexity

In this section, the computational complexity of the proposed algorithm will be calculated. The
proposed algorithm consists of three main computational parts. The first part includes calculating
the minimax distance and the adjacency matrix. The computational complexity of this part of the
prim algorithm is O(n*). The calculations of the second part, which is to find the minimum minimax
distance for dividing the members into clusters that require about O(k x n) calculations, then to update
the cluster centers also requires about O(k x n) calculations. The second part’s calculations, which
include determining the minimum minimax distance for clustering members, necessitate about O (k xn)
calculations. Subsequently, updating the cluster centers also demands about O(k x n) calculations. As
a result in Algorithm 2, the computational complexity of this part is about O(k x n). Given that these
calculations are repeated P x ITR times, the number of ITR is equal to k by default, and the number
of P using is between 1 and 5. Thus, the computational complexity of this part is equal to
@) (k2 X n) in the worst case. The computation of the cluster center determination for the next stage is
performed in the third section, which possesses a computational complexity of O (k x n). Thus, the
total computational complexity is as follows:

O (n’) + O (K xn) + O (k x n) =0) (13)

Algorithm 2: Noise and outliers’ correction algorithm in FPC
Input: T as a set of labeled points according to the number of clusters; M as a set of cluster centers; D as
the minimax distance matrix and MST as the minimum spanning tree
Output: labeled points after assigning the noise and outliers to normal clusters
Algorithm:
1 Identify noise points
fori from 1 ton do
for j from 1 to k do
if 7, = m; then continue; end if
if D7, = D,v,mj. then 7; = 0; break; end if
end for
end for
1 Assign noise points to clusters

(Continued)
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Algorithm 2 (continued)
find edges of MST that contain noise points
fori from 1 to h do
ifv, =0&v, #0 thenv, =v,;
elseif v, =0& v, #0 thenv, =v,;
elseif v, =0 & v, =0 thenv, & v, = Value of other occurrences of v;’s;
end if
end for
Update T;

4 Experimental Results and Comparison with Other Algorithms

In this section, the proposed algorithm will be tested experimentally and compared with state-of-
the-art algorithms in this field. Table 2 examines some of the specifications of these algorithms. The
criteria of this comparison are how the data is clustered by each algorithm, the algorithm’s behaviour
in clustering different datasets, the time required to perform clustering, and the computational
complexity of clustering algorithms. For the sake of simplicity, the proposed algorithm is referred
to as the Fast Path-based clustering algorithm (FPC) in this section.

Table 2: Specifications of the compared algorithms and the proposed algorithm

Methods Parameters Sensitivity to initial ~ Time complexity  Autodetect number of
values clusters
KM [¢] k Yes O (nkt) No
DBSCAN [9] Eps, MinPts  No O (n?) Yes
NCut [18] k,o Yes O (n*) No
Fast-MST[12] k Yes O (n**1og (n)) No
RPSC [16] k,o Yes O () No
FDPC [17] d. No O (n?) Yes
IPC[14] k No O (n?) No
GOPC [20] k No O (k x n?) Yes
FPC k No O (n?) No

The comparison method begins with the clustering algorithms comparing the clustering results
of various datasets. Following that, an analysis will be conducted on the clustering algorithms to
the duration of the clustering procedure. It is worth noting that all algorithms are implemented in
MATLAB.

According to Table 3, the Iris dataset consists of two scattered clusters, and the Flame consists of
a spherical cluster and a semi-circular cluster. The Pathbased dataset consists of an unfinished circle
and two noise clusters inside. The Spiral data set also consists of three helices. DS1 consists of three
straight lines, while DS2 consists of three nested circles.



12 CSSE, 2024

Table 3: Specifications of the used datasets

Datasets Number of points  Dimension  Number of clusters
Iris 150 2 2
Flame 240 2 2
Pathbased 300 2 4
Spiral 312 2 3
DS1 695 2 3
DS2 385 2 3
Compound 399 2 5
Jain 373 2 2
Aggregation 788 2 7
D31 3100 2 31
Unbalance 6500 2 8
A3 7500 2 50
T4 8000 2 6

The compound comprises five clusters of different shapes and different amounts of noise. Simi-
larly, Jain consists of two crescents with densities. D31 consists of clusters with Gaussian distribution.
The Unbalance dataset is a two-dimensional dataset with 6,500 points and 8 clusters with a Gaussian
distribution. The T4 has six sizes, shapes, and orientations clusters, including specific noise and
random points like streaks. Aggregation also consists of seven groups of points that are perceptually
divisible. The A3 dataset also consists of spherical clusters with a Gaussian distribution of 7,500 points.
In all these datasets, the number of clusters is already known. Since some algorithms, such as KM,
generate different results with each performance, the best results of these algorithms are compared
and presented after ten iterations for each data set. The appropriate parameters for DBSCAN (EPS,
MinPts) have been selected according to the algorithm proposed in [21]. Fig. 1 shows the results of
clustering algorithms.

FAST-MST RPSC IPC GOPC FPC

Figure 1: Results of clustering of flame (A), Spiral (B), and D31 (C) datasets using FAST-MST, RPSC,
IPC, GOPC, and FPC algorithms

4.1 Comparison with MST-Based Clustering Algorithms

This subsection will examine the efficiency and clustering of the FPC algorithm and the proposed
algorithms based on the minimum spanning tree. The algorithms compared to the FPC algorithm
in this section include: the clustering algorithm based on a fast approximate minimum spanning tree
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(hereinafter referred to as FAST-MST [12]), the RPSC robust path-based spectral clustering algorithm
[16], the improved path-based clustering algorithm, IPC [14], and the general optimal path-based
clustering algorithm, GOPC [20]. Table 4 shows the execution times of the comparable algorithms
for clustering the Flame, Spiral, and D31 datasets. Given that the Flame dataset contains 240 points
and the Spiral has 312 points, these two datasets are too small to compare the time complexity of each
algorithm. The D31 dataset, comprising 3100 data points, is used in this comparison.

Table 4: Comparison of running time of comparable algorithms for flame, spiral, and D31 datasets

Algorithm execution time (in seconds)

FAST-MST RPSC IPC GOPC FPC
Flame 0.2337 0.2514 0.1191 0.1187 0.1025
Spiral 0.3706 0.3666 0.1184 0.1193 0.1076
D31 7.6 15.6 1.3738 1.3780 0.9567

According to the results presented in Fig. | and Table 4, the following can be concluded:

1. IPC, GOPC, and FPC all present the same clustering results and all three can correctly cluster
datasets with different shapes.

2. In clustering smaller datasets, all three IPC, GOPC, and FPC algorithms have approximately

the same runtime (however FPC is slightly faster in this dataset).

. FPC operates much faster (about 50% faster) than other algorithms in clustering large data sets.

4. RSPC also provides acceptable results in the clustering process but has a higher time complexity
than IPC, GOPC, and FPC.

5. FAST-MST is highly sensitive to noise. This is a known drawback in most MST-based
clustering algorithms.

(98]

4.2 Comparison with Other Clustering Algorithms

This section compares the FPC algorithm with the clustering algorithms in this field. Figs. 2
and 3 show the clustering results of the above algorithms for clustering 12 datasets with different
shapes and sizes. This dataset can be seen in Table 4. Fig. 2 shows the clustering results of the first
series of datasets, which are mostly small in size and limited in the number of clusters for K-means,
DBSCAN, NCut, FDPC, IPC, GOPC, and FPC algorithms. According to the results, it can be seen
that FPC has the best performance in terms of clustering among other algorithms.

Fig. 3 shows the execution times of the compared algorithms for clustering the Iris, Flame,
Pathbased, Jain, DS1, and DS2 datasets. In the Fig. 3, it can be seen that FPC has a good execution
time in clustering this data set. The Iris dataset is the only instance where the DBSCAN algorithm
outperforms FPC in clustering. However, it should be noted that in this case, DBSCAN fails to classify
the noise and treats it as an independent cluster, whereas FPC does so. FPC has nearly the same
execution time as FDPC, GOPC, and IPC in most cases; however, based on the clustering method and
performance metrics, it is evident that FPC outperformed the others. In Path-based dataset clustering,
the execution time of the FPC algorithm is longer than FDPC, GOPC, IPC, and DBSCAN algorithms.
According to Fig. 3, the DBSCAN algorithm failed to perform the clustering operation correctly. The
FDPC algorithm also had a lower performance than the FPC.
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Figure 2: Clustering results of the first series of datasets with the desired algorithms. Datasets: (A) Iris,
(B) Flame, (C) Pathbased, (D) Jain, (E) DS1, (F) DS2
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Figure 3: Runtime comparison of algorithms for first series datasets

Regarding GOPC and IPC, their performance is comparable, and time differences are negligible;
however, these two algorithms cluster this data set marginally quicker than FPC. However, given that
FPC outperforms IPC and GOPC in the majority of the previous datasets, it can be concluded that
the FPC algorithm has the best performance in terms of runtime and clustering in this section when
compared to other algorithms. Eq. (1), which represents the formula for determining the number of
particles in FPC, demonstrates that as the number of points and size of the datasets increase, so does
the speed of FPC, enabling it to perform clustering operations more rapidly. Similarly, Fig. 4 shows the
results of the second series clustering of the datasets, which often have a larger size and more clusters
than the first series.

According to the results, it can be seen that FPC, IPC, and GOPC have the best performance
in clustering among other algorithms, except for the Aggregation dataset. Due to a narrow line
connecting the two right clusters being a suitable data set, detection by MST-based algorithms and
the minimax distance is challenging. The execution time of the Compound and Aggregation data
clustering process for the compared algorithms can be seen in Fig. 5. Following FDPC, the FPC
algorithm shows the quickest execution time in clustering the datasets illustrated in the Fig. 5, except
for Aggregation, where the FDPC algorithm exhibits superior performance in terms of both clustering
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and execution time, the IPC, GOPC and FPC algorithms demonstrate comparable performance in
these aspects while also surpassing alternative algorithms in terms of efficiency.

E v

K-Means DBSCAN NCui v"

Figure 4: Clustering results of the first series of datasets with the desired algorithms. Datasets: (A)
Compound, (B) Aggregation, (C) D31, (D) Unbalance, (E) A3, (F) T4
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Figure 5: Runtime comparison of desired algorithms for compound and aggregation datasets

Fig. 6 shows the runtime clustering of D31, Unbalance, A3, and T4 datasets for the discussed
algorithms. In this form, the K-means algorithm has the shortest runtime but performs worse than
others. The FDPC algorithm is then faster but performs poorly as NCut in the A3 and T4 datasets.
Only IPC, GOPC, and FPC algorithms perform well in clustering these datasets. Therefore, according
to Fig. 6, it can be seen that FPC has a faster runtime than IPC and GOPC. IPC, GOPC, and FPC
algorithms have similar clustering performances due to their similar structure. However, FPC is faster
than IPC and GOPC in terms of runtime.
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Figure 6: Runtime comparison of desired algorithms for medium-sized datasets
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Based on these comparisons, it can be concluded that the proposed algorithm in this paper
(FPC) in clustering the Table 4 datasets is more efficient regarding performance and execution time
among the noted algorithms. The K-means algorithm also has the worst performance among the
other algorithms. Despite the high speed of the clustering process, FDPC cannot adequately cluster
non-Gaussian distributed datasets. This proves that the FDPC can only detect clusters that have
specific centers [1 7]. DBSCAN can detect clusters of arbitrary shapes in most sets, but finding suitable
parameters for some datasets, including Path-based, is difficult. When clustering additional datasets
with DBSCAN, an approximation of the EPS value is possible, even when the algorithm described
in [21] is utilized. Accurately determining both parameters requires trial and error, which causes this
algorithm to be more time-consuming than others.

5 Conclusion

This paper presents FPC, an exclusive and hybrid algorithm, for optimizing and minimizing the
criteria function. The FPC was compared with state-of-the-art clustering algorithms in clustering
two-dimensional datasets of different shapes. In the meantime, FPC overcame other competitors in
efficiency and performance and showed good performance in the clustering procedure. FPC requires
three parameters k, ITR, and P that the ITR and P parameters can be calculated by the algorithm
itself or entered by the user manually. So, typically, the algorithm only needs the k parameter.
This makes FPC a general clustering algorithm with the same behavior in clustering different
datasets. Nevertheless, this algorithm encounters a challenge when confronted with interconnected
clusters. This was observed in Aggregation dataset clustering in which the FPC could not detect two
interconnected clusters. This connection causes the distance between the points in that area to be
less than the value required to separate the clusters. Another problem with FPC is its computational
complexity, around O (n*). Despite this satisfactory value, it remains below the optimal level. The most
important reason for this complexity is using the prim’s algorithm to create the MST and the minimax
distance. By solving this problem, the execution speed of the algorithm can be increased up to ten
times, and its computational complexity can be improved to O(k” x n). Future work to improve this
algorithm can address the above problems and solutions to address them. Providing solutions to these
problems can make FPC much more practical and faster.
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