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ABSTRACT

In winter, wind turbines are susceptible to blade icing, which results in a series of energy losses and safe operation
problems. Therefore, blade icing detection has become a top priority. Conventional methods primarily rely on
sensor monitoring, which is expensive and has limited applications. Data-driven blade icing detection methods
have become feasible with the development of artificial intelligence. However, the data-driven method is plagued
by limited training samples and icing samples; therefore, this paper proposes an icing warning strategy based on
the combination of feature selection (FS), eXtreme Gradient Boosting (XGBoost) algorithm, and exponentially
weighted moving average (EWMA) analysis. In the training phase, FS is performed using correlation analysis to
eliminate redundant features, and the XGBoost algorithm is applied to learn the hidden effective information in
supervisory control and data acquisition analysis (SCADA) data to build a normal behavior model. In the online
monitoring phase, an EWMA analysis is introduced to monitor the abnormal changes in features. A blade icing
warning is issued when the monitored features continuously exceed the control limit, and the ambient temperature
is below 0°C. This study uses data from three icing-affected wind turbines and one normally operating wind turbine
for validation. The experimental results reveal that the strategy can promptly predict the icing trend among wind
turbines and stably monitor the normally operating wind turbines.
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XGBoost EXtreme gradient boosting
EWMA Exponentially weighted moving average
SCADA Supervisory control and data acquisition
RF Random forest
SVM Support vector machines
GBDT Gradient boosting decision tree
RMSE Root mean square error
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MAE Mean absolute error
MAPE Mean absolute percentage error
AdaBoost Adaptive boosting
GBDT Gradient boosting decision tree

1 Introduction

Traditional fossil energy sources are declining, and the greenhouse gases and hazardous
substances released by their combustion severely threaten the environment and public health [1].
Renewable energy has garnered widespread attention worldwide to cope with the energy crisis and
environmental degradation. Among the numerous renewable energy sources, wind energy is developing
rapidly due to its non-polluting nature, abundant resources, and sophisticated technology [2]. High-
altitude regions are often selected as ideal sites for wind farms because of their substantial wind energy
potential and the high density of cold air [3]. However, these areas are also vulnerable to blade icing,
which can reduce power generation, increase component stress, affect the lifespan of turbines [4], and
even pose safety hazards due to potential ice detachment from the rotating blades, thus potentially
resulting in injuries or fatalities [5]. Currently, several commercial wind turbines utilize the deviations
between the actual and theoretical powers of the wind turbine as a criterion to identify blade icing.
An alarm is triggered when the deviation exceeds a certain threshold, stopping the wind turbine.
However, when the alarm is triggered, a substantial icing area has already formed on the blades [6].
Hence, achieving real-time detection of blade icing in wind turbines and issuing timely warnings to
ensure safe operation of wind turbines have become crucial objectives.

The monitoring methods for blade icing faults can be broadly categorized into mechanism-based
and data-driven methods [7]. Mechanism-based methods usually develop icing dynamics models and
use wind tunnel experiments and numerical simulation techniques to verify results, analyzing the
impact of blade icing on the performance of the wind turbine system. These methods also monitor
the variations in the physical characteristics of the wind turbine with the help of sensors to determine
whether icing is occurring. Muñoz et al. [8] used infrared sensors to investigate blade icing based
on the change in emissivity when the blade surface is iced over. Kim et al. [9] employed grating
fiber optic sensors to classify ice, water, and air media on wind turbine blades because the shift in
Fresnel reflection due to icing produces changes in specific intensity. Wang et al. [10] proposed an
improved multi-shot icing computational model to address the challenges posed by periodic changes
in the yaw condition field for icing studies. They demonstrated that the model helps analyze complex
icing problems via icing wind tunnel experiments and numerical simulations. Manatbayev et al. [11]
used a moving reference system to consider the rotation effects on the droplet field and applied the
FENSAP–ICE icing calculation software to predict the shape of icing at different angles of attack
for a vertical axis wind turbine. Mechanism-based methods exhibit a certain level of accuracy but also
have some limitations. First, establishing mechanism models requires high-precision sensors, which are
not commonly equipped in most existing wind turbines. Therefore, installing these sensors would incur
additional costs. Second, wind turbines operate under complex and variable operating conditions. The
accuracy of mechanism models significantly decreases with the change in the operating conditions
of the wind turbines, thus restricting their practical utility. The data-driven methods establish the
correlations between the condition monitoring data and the wind turbine status by analyzing and
mining the data of wind turbine operations, thus achieving the fault diagnosis of the system without
knowing the system’s exact analytical model. In recent years, numerous large-scale wind turbines have
been equipped with supervisory control and data acquisition (SCADA) systems. With advancements in
data mining technology, data-driven methods have become feasible for detecting blade icing in wind
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turbines [12]. Moreover, SCADA systems comprise a vast amount of monitoring data for various
components or subsystems of wind turbines, such as environmental parameters, operational statuses,
and control parameters. This comprehensive monitoring capability detects the turbine’s overall
condition without requiring additional hardware investment, bolstering the cost-effectiveness of data-
driven methods [13]. Bai et al. [14] forwarded a recursive feature elimination and cross-validation
method combined with a conduction support vector machine to address high dimensionality and raw
data imbalance in data obtained from the SCADA system and effectively tested them on four wind
turbines using random forest (RF), support vector machines (SVM), and eXtreme Gradient Boosting
(XGBoost) algorithms. Tong et al. [15] combined the support vector data description approach with the
traditional fixed weighting strategy, an adaptive weighted kernel extreme learning machine algorithm
was developed, and the superiority of the proposed algorithm was verified on two wind turbines.
Jia et al. [16] proposed a combined slow feature analysis and SVM strategy to detect wind turbine
blade icing faults and revealed that selecting the number of slow features is essential. Liu et al. [17] used
the deep autoencoder network to learn multilevel fault features from data obtained from SCADA and
implemented the idea of integrated learning to construct an integrated icing detection model by adding
classifiers after each hidden layer of the network. Cheng et al. [18] suggested a temporal attention-
based convolutional neural network to automatically learn beneficial features from raw time sensor
data and detect blade icing.

The number and scale of wind farms are growing rapidly with the development of wind energy. The
wind power operation and maintenance model are progressing toward digitalization and intelligence
[19]. Data-driven methods exhibit great potential and advantages, but data-driven methods often
require an extensive amount of labeled data. Although wind farms daily generate a large number of
data, these data often do not have high-quality labels. Moreover, labeling the data is labor-intensive
and time-consuming. In addition, normal operations of wind turbines usually lead to an unbalanced
dataset. Models trained on unbalanced datasets generate predictions biased toward the majority
category and cannot accurately forecast icing faults. Currently, there are two major approaches to
data imbalance treatment for the problem of category imbalance. One is based on the data aspect, such
as Chen et al. [20], who used undersampling of the normal data to eliminate the effect of imbalance.
Xu et al. [21] proposed a similar-functionbased undersampling algorithm to remove redundant normal
data, while the synthetic minority over-sampling technique algorithm was applied to generate icing
data to achieve data balance. The other strategy is based on algorithms. Peng et al. [22] introduced a
focal loss function to replace the traditional cross-entropy loss function, reducing the model prediction
bias caused by data imbalanced sets by downweighting simple samples so that the loss function focuses
more on training complex samples. Ding et al. [23] combined the ideas of undersampling and ensemble
learning by normal data undersampling to yield multiple subsets while assigning icing data to each
subset as a way to make the data in each subset balanced and then using temporal convolutional
networks to train each subset to obtain multiple classification models. Finally, the predictions of all
models are averaged as the final prediction of the sample. However, such methods will likely be affected
by hyperparameters or thresholds that are challenging to determine.

To solve this problem, this paper proposes a normal behavior model-based icing warning strategy
for wind turbines. The method only learns the normal data from SCADA data and achieves the icing
warning of wind turbines based on the discrepancy between the residuals of the model’s predicted and
actual values of the normal and icing data, effectively avoiding the problem of data imbalance. Data-
driven based methods are categorized into machine learning–based methods and deep learning–based
methods. Deep learning dominates the field of fault diagnosis because of its robust feature extraction
capabilities, but it requires a large amount of data, which may be lacking in the industry. Machine
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learning is still widely adopted because of its unique advantages in the presence of insufficient training
samples, limited computational resources, and specific learning rules. The XGBoost algorithm, as
a classical and efficient integrated learning algorithm, has been widely validated for its excellent
performance in several data science competitions [24] and practical applications [25]. Therefore, it is
selected in this paper to train the normal behavior model. However, the data recorded by the SCADA
system have hundreds of dimensions, which will result in a dimensional catastrophe if all of them are
inputted into the model, leading to an overly complex model, overfitting phenomenon. In this regard,
to avoid losing the generality, this paper adopts three standard statistical measures, namely Pearson,
Spearman, and Kendall, to select the input variables of the normal behavior model. In addition, if the
difference in residuals is used to artificially determine whether the blade is iced, it is easily affected
by professional knowledge and is highly subjective. This paper introduces the exponentially weighted
moving average (EWMA) control chart during the testing phase to monitor the changing trends of the
residuals.

This paper’s main contributions can be summarized as follows:

1. The SCADA system documents high-dimensional data, which can cause feature redundancy
and affect the accuracy of icing prediction if the original features are used directly. This paper
uses Pearson, Spearman, and Kendall methods to select effective features.

2. A machine learning–based fault diagnosis strategy is forwarded to address the problem of the
industry’s Insufficient high-quality samples and unbalanced SCADA data. The strategy only
uses normal data to train the XGBoost model to avoid the issue of insufficient icing samples.

3. Considering that artificially setting the residual threshold is prone to cause false alarms,
EWMA is introduced to analyze the trends of residual change.

The rest of this paper is structured as follows. Section 2 introduces the theoretical background
and proposed methods. Section 3 validates the presented method using the data collected from a wind
farm in Hubei Province, China, followed by a brief conclusion in Section 4.

2 Feature Selection (FS)–XGBoost–EWMA–Based Icing Warning Model
2.1 FS

The wind turbine is an electrical, mechanical device that harvests energy from the wind to generate
power. Ice on the blades results in uneven quality, affecting the aerodynamic characteristics and
reducing the output power at the same wind speed. Therefore, this paper selects the 60 s average power
in the dataset as the monitoring feature. In order to select appropriate modeling variables, this paper
uses the Pearson, Spearman, and Kendall methods to calculate the correlation coefficient between
60 s average active power and other variables to determine the input of the normal behavior model.

For the input variable X and the output variable Y in a given sample, the formula for the Pearson
correlation coefficient is defined as follows:

r = n
∑

XY − ∑
X − ∑

Y√
n

∑
X 2 − (∑

X
)2

√
n

∑
Y 2 − (∑

Y
)2

(1)

where n represents the number of samples. The r value ranges between –1 and 1. An increased proximity
to 1 indicates a more robust linear correlation between the input variable X and the output variable
Y . When the value is 0, the variables X and Y are not correlated.
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The Spearman’s rank correlation coefficient formula is expressed as follows:

γ = 1 − 6
∑

d2
i

n (n2 − 1)
(2)

where di = rg (Xi) − rg (Yi) is the deviation between the ranks of Xi and Yi. The Spearman’s rank
correlation coefficient assesses the monotonic correlation between two variables, and γ takes a value
between –1 and 1. The closer it is to 1, the stronger the correlation between the variables.

The formula for the Kendall rank correlation coefficient is described as follows:

τ = 2
n (n − 1)

∑
i<j

sgn
(
Xi − Xj

)
sgn

(
Yi − Yj

)
(3)

The Kendall rank correlation coefficient measures the dependent correlation between two vari-
ables, with τ ranging between –1 and 1. The closer it is to 1, the stronger the correlation between the
variables.

Table 1 presents the relationship between the correlation values and strengths used in this paper.

Table 1: Correlation coefficients and strength of correlation

Value range of correlation coefficient Correlation intensity

0.8–1.0 Strongly correlation
0.6–0.8 Strong correlation
0.4–0.6 General correlation
0.2–0.4 Weak correlation
0.0–0.2 Very weak correlation or no correlation

To ensure the effectiveness of the features, this paper deletes the weakly correlated and very weakly
correlated features. It selects the features whose absolute values of the three correlation coefficients are
all greater than 0.4 as the inputs of the early warning model for wind turbine icing.

2.2 XGBoost
The XGBoost algorithm is an integrated algorithm based on gradient boosting decision tree

(GBDT) model optimization proposed by Chen et al. [26]. Its basic idea is to fit the residuals of
previous training by continuously training a new decision tree model and accumulating the results
of all trees as the final prediction [27].

Suppose a dataset of n samples and m features is given: D = (Xi, yi) (|D| = n, xi ∈ Rm, yi ∈ R).

Here, Xi, yi represent eigenvalues and target values, respectively.

XGBoost contains K trees; therefore, the prediction result for a sample can be expressed as follows:

ŷi =
K∑

k=1

fk (xi), fk ∈ F (4)

where ŷi is the model’s predicted value, xi is the ith input sample, fk (xi) is the leaf weight, denotes the
prediction score of the kth tree for sample xi, and F is the function space comprising the corresponding
regression trees.
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The objective function is defined as follows:

Obj =
n∑

i=1

l
(
yi, ŷi

) +
K∑

k=1

Ω (fk), fk ∈ F (5)

where
∑n

i=1 l
(
yi, ŷi

)
is the loss function, which represents the error between the predicted value ŷi and

the actual value yi. The smaller the loss function, the more accurate the surface model prediction. Ω (fk)

is the regularity term that measures the model’s complexity. XGBoost adds regularity terms to control
the model’s complexity, which can effectively prevent overfitting while learning high-dimensional
SCADA data.

A greedy algorithm is used during XGBoost training to add a new regression decision tree to
the existing model one at a time [28]. XGBoost gradually improves the model’s prediction ability by
continuously adding new regression decision trees to fit the modeling residuals of the current model.
Assuming that the predicted sample value xi in the t–1st iteration is ŷ(t−1)

i , then:

ŷ(t)
i =

t∑
j=1

fj (xi) = ŷ(t−1)

i + ft (xi) (6)

where ŷ(t)
i denotes the prediction result of sample xi after the tth iteration, and ft (xi) denotes the tth

tree model.

The objective function can be expressed as follows:

Obj(t) =
n∑

i=1

(l
(
yi, ŷ(t−1)

i + ft (xi)
) + Ω (ft) + contant (7)

where at the tth iteration, the regular term of the previous t–1 iterations can be regarded as a constant
term, and is denoted as constant.

XGBoost performs a second-order Taylor expansion of the objective function to provide a more
accurate approximation of the objective function. After deleting the constant term, the objective
function is expressed as follows:

Obj(t) =
n∑

i=1

(
gifi (xi) + 1

2
hifi (xi)

2

)
+ Ω (ft) (8)

where gi and hi represent the loss function’s first and second-order derivatives, respectively. Ω (ft) =
γ T + 1

2
λ

∑T

j=1 ω2
j ; γ is the coefficient of the leaf node; T denotes the number of leaf nodes; ω denotes

the output score of the leaf node; and λ is the L2 regular penalty term.

SCADA data have the characteristics of complex sources, information coupling, and strong time
variability; these changes are nonlinear. Taylor’s formula is a commonly used mathematical tool
for approximating nonlinear functions. XGBoost’s quadratic Taylor expansion of the loss function
can provide a more accurate approximation of the objective function, better capturing the nonlinear
relationship in the SCADA data.

Furthermore, by transforming the objective function into an accumulation of leaf nodes and
defining the q function to map the input x to some leaf node, the following expression is obtained:

ft (x) = ωq(x), ω ∈ RT , q : Rd → {1, 2, . . . , T} (9)
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The set of samples on each leaf node j is Ij = {i |q (xi) = j}, and the objective function is
transformed into a one-variable quadratic equation. Its minimum value is obtained to obtain the leaf
node’s optimal weight and objective function:

ω∗
j = − Gj

Hj + λ
(10)

Obj(t) = −1
2

T∑
j=1

G2
i

Hi + λ
+ γ T (11)

where Gj = ∑
i∈Ij

gi, Hi = ∑
i∈Ij

hi.

By calculating information gain on leaf nodes, the XGBoost model can distinguish practical
features from multi-dimensional SCADA data and select nodes with the most extensive information
gain to split, thereby building a highly accurate and robust normal behavior model. The calculation
of information gain in XGBoost is presented as follows:

Gain = 1
2

[
G2

l

Hl + λ
+ G2

r

Hr + λ
− (Gl + Gr)

(Hl + Hr) + λ

2]
− γ (12)

where Gl, Gr is the cumulative sum of the first-order gradients of the left and right leaves after division;
Hl, Hr is the cumulative sum of the second-order gradients of the left and right leaves after division.

2.3 Exponential Weighted Average of Movement
Because the normal behavior model is trained based on the normal SCADA data, the residuals

between the model’s predicted and actual values for normal samples are relatively small. However, the
normal behavior model does not learn from icing samples; the residuals between the model’s predicted
and actual values for icing samples are relatively large. Therefore, in this paper, the residuals between
the model predicted values and the actual values of the samples are used to achieve the early warning
of icing in wind turbines. The residual difference formula is expressed as follows:

Rt = yt − ŷt (13)

where Rt is the output residual at time t; yt is the actual value at time t; and ŷt is the model predicted
value at time t.

SCADA data are time series data, and EWMA is a commonly used time series smoothing
method. It performs a weighted average of the time series, assigning higher weights to the most recent
observations and lower weights to earlier observations. This enhances its ability to capture the trend of
the series and the tiny fluctuations or changes. Meanwhile, the operating conditions of wind turbines
are very complex and variable, and the SCADA data are highly variable [29]. Therefore, this paper
uses EWMA to analyze the residual series to detect abnormalities in time.

The formula for calculating the value of EWMA is shown as follows:

Et = λμ0 + (1 − λ) Et−1 (14)

where μ0 is the mean value of the validation sequence, and λ is the weight of the historical residuals
on the current EWMA value, which is taken as 0.2 in this paper.

Due to blade icing, the actual power of the wind turbine is reduced, and the large prediction of the
monitored values by the obtained warning model trained under normal conditions results in negative
residuals; therefore, the lower limit of the EWMA control chart is selected in this paper to generate
the warnings for wind turbine icing.
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Lclt = μ0 − Kσ0

√
λ

2 − λ

[
1 − (1 − λ)

2t
]

(15)

where σ0 represents the standard deviation of the residuals of the validation sequence; K is the
threshold coefficient, which is set to 3 according to reference [30]. Considering the continuity of icing
of wind turbines and timely warning, this paper supposes that if the EWMA curve exceeds the lower
control limit for ten consecutive sample points, the wind turbine is considered an icing condition.

2.4 Early Warning Strategy of Wind Turbine Based on FS–XGBoost–EWMA
Fig. 1 shows the wind turbine early warning strategy based on the FS–XGBoost–EWMA system

proposed in this paper. It is divided into two parts: offline training and online monitoring.

Figure 1: Wind turbine icing warning strategy

Offline training: due to the complex and variable operating conditions of wind turbines, the
original dataset contains a huge amount of bad data with zero generator torque, active power less
than or equal to zero, and wind speed less than the cut-in or greater than the cut-out wind speed. The
data for the wind turbine mentioned above shutdown period are deleted to obtain the training set for
normal operation. Meanwhile, after severe icing, the SCADA data are deleted. Next, the correlation
analysis is performed on the 60 s average active power. This article selects features whose absolute
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values of three correlation coefficients, namely, Pearson, Spearman, and Kendall, are all greater than
0.4 to train the XGBoost normal behavior model.

Online monitoring: to simulate the online monitoring phase, data from the day of the wind
turbine icing shutdown and normal data from the previous day are selected for testing. First, the
same preprocessing is performed on the test set, and the data within 2 min before the wind turbine
shutdown is excluded. Next, the features related to the monitoring variables are input into the normal
behavior model obtained in the training phase to obtain the predicted value of the 60 s average
active power under the normal operation condition; furthermore, the residual difference between the
predicted value and the actual value of the 60 s average active power is computed, and the residual
is subjected to the EWMA analysis. If the temperature is less than 0°C and exceeds the control limit
for ten consecutive times, the wind turbine is considered to be in icing condition; otherwise, the wind
turbine is considered as normal.

3 Calculation Example of the Validation Analysis
3.1 Introduction to the Datasets

In this paper, the SCADA data of three icing wind turbines and one normal wind turbine from a
wind farm in the Hubei Province of China were selected for blade icing warning validation and analysis.
The rated power of the wind turbines was 2.5 MW, the cut-in wind speed was 3 m/s, the cut-out wind
speed was 25 m/s, the rated wind speed was 12.5 m/s, and the sampling period of the SCADA system
was 1 min. The datasets recorded the operating parameters of the wind turbines and the environmental
parameters (Table 2). Table 3 presents the operating status of the four wind turbines.

Table 2: SCADA data variable names

Variable names Variable names

TIME Generator torque
60 s average wind speed Generator power curve below lower limit fault
60 s average active power Yaw in clockwise operation mode
Instantaneous wind direction Yaw in anti-clockwise operating mode
600 s average wind direction Unwind left
Nacelle X-direction vibration Unwind right
Nacelle Y-direction vibration Instantaneous wind speed
Environmental temperature Generator speed
Cabin temperature Blade pitch angle 1, 2, 3
Yaw speed Blade pitch speed 1, 2, 3
Yaw azimuth Blade motor temperature 1, 2, 3
Unwinding angle Blade control cabinet temperature 1, 2, 3
Yaw pressure Blade radiator temperature 1, 2, 3
Grid A, B, C phase voltage Blade back power supply temperature 1, 2, 3
Grid A, B, C phase current Blade back-up power supply voltage 1, 2, 3
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Table 3: Wind turbine operating status

Wind turbine
number

Wind turbine status Data
volume

Time period

#3 Ice wind turbine 5900 2021/12/30 00:00:00–2022/01/06 03:45:00
#4 Ice wind turbine 6639 2021/12/30 00:00:00–2022/01/06 03:43:00
#6 Ice wind turbine 6832 2021/12/30 00:00:00–2022/01/06 02:04:00
#7 Normal wind turbine 7053 2021/12/30 00:00:00–2022/01/06 00:00:00

The original data contains a large amount of bad data. In this paper, all of them and the data two
minutes before the wind turbine shutdown are deleted to obtain the data shown in Table 3. The time
period of icing wind turbine extends from normal operation to wind turbine icing shutdown. The icing
wind turbine takes the #3 wind turbine as an example. This paper selects the data from December 30,
2021–January 04, 2022, for model training and validation. Notably, the data on the day of icing and
the previous day are selected to simulate online prediction. The data from December 30, 2021–January
04, 2022, of the normal wind turbine in this paper are selected for model training and validation, and
the data on January 05, 2022, are simulated for online testing.

3.2 Evaluation Methods
To assess the model’s performance, this paper employs the root mean square error (RMSE), mean

absolute error (MAE), and mean absolute percentage error (MAPE) as evaluation measures:

RMSE =
√√√√1

n

n∑
i=1

(
yi − ŷi

)2
(16)

MAE = 1
n

n∑
i=1

∣∣yi − ŷi

∣∣ (17)

MAPE = 1
n

n∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ × 100 (18)

3.3 Wind Turbine Warning under Icing Condition
To establish an effective icing warning model for wind turbines, this paper selected the data from

December 30 2021, to January 04, 2022, for analysis and divides it into a training set and a verification
set in a ratio of 8:2. First, the Pearson, Spearman, and Kendall correlation coefficient methods are used
to calculate the correlation coefficient between the 60 s average active power and other variables. In this
paper, the variables whose absolute values of three correlation coefficients are all greater than 0.4 are
taken as the inputs of the normal behavior model. The variable is deleted if any correlation coefficient
is less than 0.4. Table 4 shows the correlation coefficient values between the input variables and the
60 s average active power.

To verify the prediction performance of the XGBoost algorithm, this paper selects RF, SVM,
AdaBoost, and GBDT algorithms to compare, learn the information hidden in SCADA data on the
training set, and evaluate it on the verification set to select the optimal wind turbine icing warning
normal behavior model. Table 5 compares the prediction results of different methods.
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Table 4: Input variables and correlation coefficients

Input variable Pearson Spearman Kendall

Grid phase A current 0.989792 0.986362 0.909991
Grid phase C current 0.989623 0.986121 0.908976
Grid phase B current 0.989602 0.985735 0.907875
Generator torque 0.985939 0.987583 0.915600
60 s average wind speed 0.961217 0.976932 0.876409
Generator speed 0.956758 0.950757 0.824831
Instantaneous wind speed 0.916939 0.931354 0.774387
Grid phase C voltage 0.755115 0.738215 0.531943
Grid phase B voltage 0.732875 0.717721 0.513100
Grid phase A voltage 0.715994 0.698525 0.495768
#3Blade pitch angle 0.544170 0.620707 0.509028
#1Blade pitch angle 0.544123 0.620554 0.508869
#2Blade pitch angle 0.544102 0.620904 0.509132
Cabin temperature −0.4423 −0.610130 −0.433960

Table 5: Comparison of prediction methods

RMSE MAE MAPE (%)

FS–RF 99.31 70.87 55.31
FS–SVM 92.69 67.34 42.54
FS–AdaBoost 91.35 72.18 61.24
FS–GBDT 89.92 62.50 33.51
FS–XGBoost 80.81 56.00 28.84

The comparison results in Table 5 reveal that the RMES, MAE, and MAPE of the XGBoost
algorithm are better than that of RF, SVM, AdaBoost, and GBDT algorithms. Compared with
the worst RF algorithm, the three error indicators are improved by 18.63%, 20.98%, and 47.86%,
respectively. Compared with the GBDT algorithm, the three error indicators are improved by 10.13%,
10.4%, and 13.94%, respectively. The quadratic Taylor expansion of the loss function by XGBoost can
better learn the effective information characterizing wind turbine icing in SCADA data.

Sensitivity analysis evaluates the impact on the output results by changing the model’s input
parameters. The hyperparameters such as n_estimators, learning_rate, and max_depth play a crucial
role in the performance of the XGBoost algorithm. This paper conducts sensitivity analysis on the
three parameters mentioned above to evaluate the effects of different hyperparameters on model
performance. Among them, n_estimators represents the number of base learners in XGBoost. The
greater the number, the stronger the learning ability of the model, but the model is also more accessible
to overfit. Considering the size of the dataset, this article sets the number of n_estimators to 50, 100,
and 150 for analysis; the learning_rate parameter represents the learning rate, and the value range is
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usually between [0.01,0.3]. This article sets the learning_rate to 0.01, 0.1, 0.3 for analysis. max_depth
controls the maximum depth of the tree in the model, and the value usually ranges between [3,10]. This
article sets max_depth to 3, 6, and 9 for analysis. Finally, the analysis results are shown in Tables 6–8.

Table 6: Sensitivity analysis of n_estimators

N_estimators RMSE MAE MAPE (%)

50 81.79 57.56 32.78
100 80.81 56.00 28.84
150 81.32 56.21 27.91

Table 7: Sensitivity analysis of learning_rate

Learning_rate RMSE MAE MAPE (%)

0.01 436.24 334.56 54.97
0.1 80.81 56.00 28.84
0.3 86.87 59.81 27.33

Table 8: Sensitivity analysis of max_depth

Max_depth RMSE MAE MAPE (%)

3 80.81 56.00 28.84
6 96.89 63.86 28.55
9 103.76 68.71 26.26

Table 6 shows that when n_estimators is 100, all three model indicators perform best. Table 7
shows that when the learning_rate is 0.1, RMSE and MAE are better than other learning_rates, but
MAPE is smaller than learning_rate of 0.3. Considering that when the learning_rate is 0.1, the model’s
overall performance is better and 0.1 is selected as the optimal learning rate. Max_depth is similar to
learning_rate, and the larger the max_depth value, the more complex the model and the higher the
requirements for computing resources and memory space; therefore, max_depth is selected as 3. The
n_estimators, learning_rate, and max_depth of the optimal normal behavior model in this paper are
set to 100, 0.1, and 3, respectively. Fig. 2 depicts the loss function curve of the normal behavior model.

Fig. 2 shows that at the beginning of training, the model’s loss value on the training set and
verification set dropped significantly, indicating that the learning rate was appropriate. At 40 iterations,
the loss curve became stable. In the later stage of training, the model reached a state of convergence.
The model can fit the training data well and perform better on the validation set. The normal behavior
model obtained through training is highly robust and highly generalizable.
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Figure 2: Loss function iteration curve

To verify the effectiveness of the icing warning strategy for wind turbines proposed in this paper,
the optimal normal behavior model was selected to verify the data on the day of wind turbine shutdown
due to icing and the day before (2022-01-05 00:00:00–2022-01-06 03:45:00). The actual and predicted
values of the 60 s average active power are shown in Fig. 3, where the red curve is the 60 s average
active power. The blue curve is the model’s predicted value.
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Figure 3: Comparison of model actual and predicted values of #3 wind turbine

Fig. 3 shows that the normal behavior model has a good prediction of the normal data of the test
set. Before the icing and shutdown of the wind turbines, there is an apparent deviation between the
predicted value and the actual value of the model, which can achieve the effect of initially judging the
icing of the wind turbines.

However, depending only on the residuals between the predicted and actual values of the normal
behavior model to determine the icing of wind turbines makes it easy to introduce human error. Hence,
this paper adopts the EWMA method to analyze the prediction residuals of the model.

Fig. 4 depicts the residual analysis results, wherein the red curve is the threshold curve, the
purple curve is the sample points that have not exceeded the control limit, and the green curve is
the sample points that have exceeded the control limit. Fig. 4 demonstrates the 60 s average active
power EWMA curve appears to exceed the control limit at the 178th point and near the 215th point.
According to the judgment criterion shown in Fig. 1, the wind turbines are considered to be in normal
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working condition because there is no consecutive exceeding of the control limit. However, continuous
exceeding of the control limits occurred at the 840th sample point and lasted almost until the wind
turbine blade shut down due to icing. According to the temperature variation curve of the test set in
Fig. 5, the environment temperature was below zero; hence, the wind turbines were judged to be in an
icing condition at the 849th sample point, and a warning was issued. This is 209 sample points (3.5 h)
earlier than the downtime recorded in the wind turbine operation log.
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Figure 4: EWMA residual of #3 wind turbines
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Figure 5: Temperature change curve of #3 wind turbine

Ablation studies refer to the targeted removal or modification of a part of the model, and the
effect of that part on the model as a whole is investigated by controlling the variable style. To verify
the effectiveness of FS, this paper uses the XGBoost algorithm to perform an ablative analysis of FS,
and the experimental results are shown in Fig. 6.

Fig. 6 demonstrates that FS–XGBoost improves RMSE, MAE, and MAPE by 7.35%, 14.14%,
and 19.08%, respectively, compared with XGBoost, indicating that reasonable FS helps improve the
prediction performance of the model. Subsequently, this paper compares the effect of XGBoost and
FS–XGBoost icing warnings on the test set (Fig. 7).
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Figure 6: Ablative analysis of feature selection
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Figure 7: Feature selection ablativity analysis

Fig. 7a shows the warning effect of XGBoost on the test set, and Fig. 7b depicts the warning
effect of FS–XGBoost on the test set. XGBoost has more sample points beyond the control limit in
the normal part of the test set compared to FS–XGBoost, indicating that FS–XGBoost fits the normal
samples better and has a lower probability of false alarms in the future.

To further validate the generalization performance of the icing warning strategy, the strategy
proposed in this paper is migrated to #4 and #6 wind turbines for validation, and the predicted values
of the normal behavioral model on #4 and #6 wind turbines are depicted in Fig. 8.

Figs. 8a and 8b show the actual and predicted values of the power of the #4 wind turbine and
#6 wind turbine, respectively. Fig. 8 reveals that in the normal part of the test set, the predicted and
actual values of the proposed model are highly fitted. In the place close to the severe icing of the wind
turbines, there is a deviation between the model’s predicted and actual values, which can better reflect
the differences between the residuals of the predictions of the normal samples and those of the icing
samples.
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Figure 8: Actual and predicted power of #4 and #6 wind turbines

The residuals of the two wind turbines are further analyzed using EWMA (Fig. 9).
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Figure 9: EWMA residual test of #4 and #6 wind turbines

The results of the EWMA analysis are shown in Fig. 9 of the #4 wind turbine and #6 wind
turbine. Combined with the judgment criterion proposed in Fig. 1 and the temperature variation
curve in Fig. 10, the method proposed in this paper achieves good performance on both #4 and
#6 wind turbines. It can respond promptly to the operating status of the wind turbines. Compared
with the downtime recorded in the wind turbine’s operation log, the proposed method’s warning time
is advanced by 3 and 1.5 h, respectively. Although the normal part of #6 wind turbine exceeds the
threshold curve at individual points, it does not exceed the control limit for ten consecutive minutes;
thus, it can still provide a reliable assurance for the safe operation of the wind turbine.

3.4 Condition Monitoring of Wind Turbine under Normal Condition
To prevent the possibility of false alarms in the proposed method, this paper further verifies the

effectiveness of the proposed method on a normal wind turbine. Fig. 11 illustrates the test results of
a normal wind turbine, the prediction and actual value of the 60 s average active power, the EWMA
control chart, and the temperature change of the test set. Fig. 11 shows that the actual value of the
60 s average active power and the model’s predicted value fit well. Most EWMA values are within
the lcl threshold, despite individual sample points exceeding the threshold limit. According to the
judgment criteria, there is no continuous exceeding of the phenomenon, which will not issue an alarm,
proving the effectiveness of the proposed method for monitoring the status of normal wind turbines
and avoiding false alarms.
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Figure 10: Environment temperature change curve of #4 and #6 wind turbines
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Figure 11: Normal wind turbine condition monitoring effect
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4 Conclusion

To address the issue of limited training samples and insufficient icing samples in data-driven
methods, this paper proposes an FS–XGBoost–EWMA–based icing warning strategy for wind
turbines. The strategy adopts XGBoost to establish a normal behavior model for wind turbine icing
warnings and takes the discrepancy between the residuals of the model’s predicted and the actual values
as the warning indicator. Next, it selects Pearson, Spearman, and Kendall methods to determine the
model inputs and introduces the EWMA method to analyze the predicted residual in real time during
the online monitoring stage. If the monitoring data exceeded the control limits for ten consecutive
times, and the temperature was below 0°C the wind turbines were considered to be iced.

The main conclusions are presented as follows:

1. Compared with RF, SVM, AdaBoost, and GBDT algorithms, the XGBoost algorithm has
better generalization ability and is more suitable for the high-dimensional and nonlinear
characteristics of SCADA data.

2. Compared with XGBoost, FC–XGBoost has higher prediction accuracy, and the use of
Pearson, Spearman, and Kendall helps improve the model’s performance.

3. Introducing EWMA to analyze the prediction residuals of the model can provide robust
thresholds.

The proposed strategy is validated on three icing wind turbines and one normal wind turbine. It
can predict the icing trend of wind turbines in time and monitor the normal operation of wind turbines
stably. However, this paper still has the following shortcomings:

1) This paper only uses seven days of validation data, which is relatively less for the data-driven
approach. In the future, it is necessary to collect more wind turbine data samples to validate the method
proposed in this paper more comprehensively.

2) A wind turbine is a multi-coupled complex system, and this paper only considers monitoring
the 60 s average active power. In the future, it is necessary to consider more monitoring features to
comprehensively monitor the operating status of wind turbines with multiple parameters.
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