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ABSTRACT

Most ground faults in distribution network are caused by insulation deterioration of power equipment. It is difficult
to find the insulation deterioration of the distribution network in time, and the development trend of the initial
insulation fault is unknown, which brings difficulties to the distribution inspection. In order to solve the above
problems, a situational awareness method of the initial insulation fault of the distribution network based on a
multi-feature index comprehensive evaluation is proposed. Firstly, the insulation situation evaluation index is
selected by analyzing the insulation fault mechanism of the distribution network, and the relational database of
the distribution network is designed based on the data and numerical characteristics of the existing distribution
management system. Secondly, considering all kinds of fault factors of the distribution network and the influence of
the power supply region, the evaluation method of the initial insulation fault situation of the distribution network
is proposed, and the development situation of the distribution network insulation fault is classified according to
the evaluation method. Then, principal component analysis was used to reduce the dimension of the training
samples and test samples of the distribution network data, and the support vector machine (SVM) was trained. The
optimal parameter combination of the SVM model was found by the grid search method, and a multi-class SVM
model based on 1-v-1 method was constructed. Finally, the trained multi-class SVM was used to predict 6 kinds
of situation level prediction samples. The results of simulation examples show that the average prediction accuracy
of 6 situation levels is above 95%, and the perception accuracy of 4 situation levels is above 96%. In addition, the
insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs
or the insulation fault is in the early stage, which can meet the needs of power distribution and inspection for
accurately sensing the insulation fault situation. The correctness and effectiveness of this method are verified.

KEYWORDS
Distribution grid; insulation degradation; initial insulation fault; multi-feature indices; multi-class SVM; situational
level; situational awareness

1 Introduction

Statistics show that most power failure accidents are caused by distribution network insulation
faults [1]. Based on the analysis of distribution network operation fault data, it is found that the
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dielectric properties of the insulation layer will deteriorate due to the aging phenomenon, and timely
detection of initial insulation faults before the permanent breakdown of insulation will help prevent
the failure from developing into a major accident [2]. In terms of research on online insulation
monitoring of power grids, the earliest research was carried out on insulation monitoring of low-
voltage distribution networks, which usually use leakage protection to monitor insulation status [3].
So far, researchers have proposed a variety of insulation monitoring methods. Some scholars carry out
insulation monitoring by establishing the life estimation model of insulated cables [4]. Some researchers
have proposed a method for insulation monitoring of transformers using fiber optic sensors [5].
Some researchers use deep learning algorithms to identify cable insulation defects and monitor cable
insulation status [6]. These insulation monitoring methods can not directly perceive the development
of insulation faults, and the effect is not good when applied to engineering practice. Therefore, it is
particularly important to study the effective analysis method of distribution network insulation state
and timely perceive the development trend of distribution network insulation fault to ensure the safe
and reliable operation of the power system.

As a pattern recognition method with strong generalization ability, support vector machines
(SVM) have been widely used in the field of power grid protection fault identification [7]. Reference
[8] proposed a high-impedance arc fault identification and improved protection strategy for power
grids. The measurement units arranged in power grids were used to collect data, and SVM was
used to identify high-impedance arc fault types. Reference [9] proposed a fault identification method
for intelligent distribution networks, based on voltage and current measurement values of lines,
using multi-class SVM and other models to achieve fault identification. In [10], the Hilbert-Yellow
transformation is performed on the current transient signal, and then the energy features of the current
component are extracted as the eigenvector input model to realize the identification of short-circuit
fault types in the distribution network. However, most of the research on fault type identification
methods is oriented to the scenario where the fault has already occurred, and few involve the research
on predicting the development trend of the distribution network fault before the fault occurs.

The new generation of information technology, especially the development of big data processing,
cloud computing, and other technologies [11], has enabled artificial intelligence technology to have a
strong ability to capture, analyze, and manage data [12]. Based on artificial intelligence technology,
it can well meet the intelligent perception requirements of distribution network faults under the new
situation [13]. Distribution network monitoring and management system configuration is increasingly
mature, numerous distribution network data systems provide massive and rich multi-source hetero-
geneous data, which is an important data support for the use of big data technology to characterize
distribution network insulation status, and network coordination and optimization data are possible
[14]. To extract valuable information from massive power grid data and effectively select and utilize it,
it is necessary to grasp the internal correlation and law of distribution network data [15] and extract
the main factors affecting the operation of the distribution network [16]. On this basis, considering
the influence of external environmental conditions of the distribution network [17], the accurate
perception of the development status of the initial insulation fault of the distribution network has
become a key issue in the analysis and research of the insulation fault of the distribution network [18].

At present, most cities have multiple distribution management systems, including distribution
network data acquisition and monitoring systems, distribution automation systems, power grid
meteorological information systems, dispatch automation systems, power quality detection, and
management systems, geographic information systems, and intelligent public distribution monitoring
systems. These data sources cover multiple management services such as scheduling, operation and
inspection, and marketing, as well as most power grid monitoring and collection information of
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multi-voltage levels of 110 kV and below [19]. Reference [20] proposed a distribution network fault
location method based on multi-source information fusion, which realizes the fault location of
overhead cable hybrid lines of distribution network by using voltage, current, active power, and reactive
power data. Based on the multi-source data support of distribution automation and other systems,
Reference [21] developed a distribution network fault information statistical management system to
realize the statistical analysis of distribution network fault information under different operating
states. Considering that the multi-source heterogeneous data of the distribution network contains
rich information [22], it is necessary to apply artificial intelligence technology to extract the features
with a high contribution rate to the insulation fault situation of the distribution network from the
distribution network data [23]. The information process of power systems in all aspects of power
generation, transmission, transformation, distribution, and power consumption continues to advance,
and a large number of valuable real-time and quasi-real-time data of power grid and customer service
data information resources have been accumulated [24]. All kinds of business data have been quite
large-scale in terms of total amount and types, providing good basic data support for distribution
network insulation fault situation analysis [25].

Based on the analysis and research of the insulation fault mechanism in distribution networks,
this paper selected 9 indices that effectively characterize the insulation state of distribution lines.
Additionally, it designed a relational database for the distribution network based on data support
from an existing distribution management system. Considering various fault factors and power
supply regions, this paper proposed an evaluation method for the initial insulation fault situation
in distribution networks. To reduce the dimensionality of distribution network fault data samples
which contain 6 markers representing different insulation situations, principal component analysis
(PCA) is employed. Subsequently, a SVM model is trained using the reduced dimensional data, and a
multi-class SVM model based on the 1-v-1 method is constructed. Finally, prediction sets are inputted
into the trained multi-class SVM to predict situation levels with an accuracy of not less than 90%.
The accurate prediction of insulation fault situation level under different grounding modes of the
distribution network is realized.

This paper is mainly divided into five parts. The first part provides a detailed description of the
selection basis for the evaluation index of distribution network insulation situation in this study, which
serves as the foundation for theoretical research on constructing a distribution network insulation
fault situation awareness system. The second part presents an initial method for assessing insulation
fault situations in distribution networks and proposes specific quantitative indices to measure the
risk associated with these faults. The third part explains the methodology used to process fault
data and introduces the algorithm employed to predict distribution network situations. The fourth
part focuses on simulating and verifying the proposed method, providing predictions under different
fault conditions and highlighting its advantages compared to other approaches. Lastly, the fifth part
conducts experimental verification of the proposed method, further confirming its applicability and
correctness in practical engineering applications.

2 Distribution Network Insulation Situation Evaluation Index Selection

To select a suitable insulation situation evaluation index, this section analyzes and studies the
fault mechanism of electric arc insulation in distribution network. It is found that ground residual
voltage and current are generated after the grounding fault occurs in the distribution network, which
affects the insulation state of the distribution network lines. The residual voltage is proportional to the
transition resistance, and the residual current is inversely proportional to the transition resistance. The
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asymmetry of the system can reflect the transition resistance sensitively, and the greater the asymmetry,
the more likely it is to cause overvoltage and overcurrent, and the more serious the insulation damage
of the distribution network line. There is a big difference between the damping rate and the fault time of
the distribution network, and the insulation state of the distribution network can be characterized and
warned according to the damping rate. When the fault occurs in the distribution network, the neutral
voltage and the capacitance current of the system are inversely proportional to the transition resistance
and decrease with the increase of the transition resistance. Still, they are different from the capacitance
current before the fault. According to the capacitance current of the system, the insulation state of the
distribution network can also be judged. The transition resistance Rf is the essential cause of the change
of residual voltage, residual current, asymmetry Ks damping rate d, zero sequence admittance angle θ

(Y∑), capacitance current Ic, and other index parameters at the fault point, which further affects the
insulation state of distribution network. The relationship between transition resistance Rf and residual
voltage, residual current, asymmetry Ks, damping rate d, zero sequence admittance angle θ (Y∑) and
capacitance current Ic at the fault point of the distribution network is shown in Table 1. Through the
research of insulation deterioration and insulation fault mechanism, we find that the development
process of single-phase insulation fault in distribution network is similar to that of other grounding
insulation faults. The transition resistance in Table 1 is the ground resistance of the single-phase ground
fault. Table 1 uses the single-phase grounding insulation fault as an example to describe the trend of
each characteristic indicator as the transition resistance changes. Other grounding insulation faults
follow similar insulation degradation rules.

Table 1: Relationship between transition resistance Rf and other parameters

Parameter Expression Relationship with Rf

Residual voltage ĖC (YA + YB + YC + YN) Rf

(YA + YB + YC + YN) Rf + 1

Proportional to Rf , residual
pressure increases with Rf

increasing, and other insulation
faults are similar.

Residual current ĖC (YA + YB + YC + YN)

(YA + YB + YC + YN) Rf + 1

It is inversely proportional to Rf

and the residual current
decreases with the increase of Rf ,,
and other insulation faults are
similar.

Damping rate
∑

g + gf

ωCΣ

It is inversely proportional to Rf .
The smaller Rf is, the larger the
damping rate expression
molecule is, other insulation
faults are similar.

(Continued)
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Table 1 (continued)

Parameter Expression Relationship with Rf

Capacitive current jU̇0f ωC∑

U̇0f = −ĖC

Y∑Rf + 1

Inversely proportional to Rf , Rf

affects the capacitance current by
affecting the zero-sequence
voltage amplitude, and other
insulation faults are similar.

Zero sequence
admittance angle

arg(jvωC∑+g∑+gf ) Proportional to Rf , the smaller
the Rf , the closer the zero
sequence admittance angle to 0
degrees, the smaller the zero
sequence admittance angle, and
other insulation faults are similar.

Asymmetry
(
YC + gf + aYB + a2YA

)

YA + YB + YC + gf

= k̇′
s

YΣ + gf

It is inversely proportional to Rf ,
and the asymmetry decreases
with the increase of Rf . When the
metal attribute is grounded, the
asymmetry is close to 1, and
other insulation faults are similar.

The expressions in Table 1 are obtained with the system phase C as the fault phase. Ec is the
electrodynamic force of the C-phase power supply, Y X (X = A, B, C) is the ground admittance of
the three phases of the feeder line, respectively, Y N is the neutral ground admittance,

∑
g is the total

conductance of the distribution network to the ground, gf is the transition conductance of the fault
point, ω is the system frequency, Y is the total admittance of the system to the ground, C is the
total capacitance of the distribution network to the ground, U0f is the zero sequence voltage when the
ground fault occurs. a = ej120 is the phasor operator. In particular, it is worth noting that the transition
resistance affects the capacitive current by affecting the magnitude of the zero-sequence voltage
amplitude. Since the zero sequence voltage is inversely proportional to the transition resistance, and
the zero sequence voltage is proportional to the capacitive current, the capacitive current is inversely
proportional to the transition resistance. It can be seen from Table 1 that the change of transition
resistance Rf will correspondingly cause changes in residual voltage, residual current, asymmetry Ks,
damping rate d, zero sequence admittance angle θ (Y∑) and capacitive current Ic at the fault point of
distribution network. Further analysis shows that the smaller the transition resistance Rf is, the greater
the offset of the above index parameters relative to normal conditions of the distribution network. The
operating environment is worse, the phenomenon of system overvoltage and overcurrent will be more
obvious, and the harm to the insulation state of distribution network lines will be greater.

By analyzing the mechanism of insulation fault in distribution network, the following 9 distribu-
tion network data characteristics are selected for subsequent insulation fault situational awareness:
Fault residual voltage, fault residual current, asymmetry, damping rate, zero sequence admittance
angle, capacitive current, off tuning degree, transition resistance, and fault duration. These charac-
teristics can effectively characterize the insulation state of distribution lines, and provide support for
the subsequent insulation situation level prediction of distribution networks.
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3 Evaluation Method of Initial Insulation Fault Situation of Distribution Network
3.1 Insulation Fault Risk Factor and Regional Risk Factor

According to the research results of the insulation fault mechanism of the distribution network in
Section 1 of this paper and the requirements of safe and stable operation of the distribution network,
this section adopts fault point residual voltage, fault point residual current, asymmetry, damping rate,
zero sequence admittance angle, capacitive current, detuning degree, transition resistance, fault dura-
tion and other indicators to synthesize the distribution network insulation fault risk characterization
factor Fe. The specific calculation formula of Fe is shown in Eq. (1).

Fe = Pe1 × Pe2 × Pe3 × · · · × Pen (1)

In Eq. (1): Fe is the risk factor of insulation fault. Pe1, Pe2,..., Pen refers to the score value obtained
in Table 2 after the distribution network insulation fault occurs.

Table 2: The interval fraction value of each fault indicator

Fault residual voltage Index ≤1300 V ≤3000 V ≤5500 V >5500 V
Score 1 1.5 2 4

Fault residual current Index ≤2 A ≤10 A ≤60 A >60 A
Score 1 1.5 2 4

Asymmetry Index ≤3.5% ≤20% ≤60% >60%
Score 1 1.5 2 5

Damping rate Index ≤0.10 ≤1 ≤10 >10
Score 1 1.5 2 4

Zero sequence admittance
angle (earth-free)

Index ≥84.3° ≥50° ≥20° <20°

Score 1 1.5 2 4
Zero sequence admittance
angle (extinction coil)

Index ≤θL ≤θL + 30° ≤θL + 70° >θL + 70°

Score 1 1.5 2 4
Zero sequence admittance
angle (low resistance)

Index ≥θX ≥θX − 1° ≥θX − 2° <θX − 2°

Score 1 1.5 2 4
Capacitive current
(earth-free or low resistance)

Index ≤ICX ≤ICX + 40 A ≤ICX + 80 A >ICX + 80
A

Score 1 1.5 2 3
Capacitive current
(extinction coil)

Index ≤ICL ≤ICL + 40 A ≤ICL + 80 A >ICL + 80 A

Score 1 1.5 2 3
Off tuning degree Index (−10%, −3%) (3%, −1%),

(−20%, −10%)
(−1%, 0), (−50%,
−20%)

0 or <−50%

Score 1 1.5 2 3
Transition resistance Index ≥20 kW ≥5 kW ≥1 W <1 W

Score 1 1.5 2 4
Fault duration Index ≤100 ms ≤1 h ≤2 h >2 h

Score 1 1.5 2 3
Note: θL = arctan (νωC∑/g∑), θX = arctan (ωC∑/g∑ + gN), ICX = 0.15 UphωC∑, ICL = |0.15 UphωC∑ |.
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The different power supply areas of the distribution network also affect the development trend
of insulation faults to different degrees. According to the power supply area where the distribution
network is located and the load density of the power supply area, set the regional insulation risk
factor check table as shown in Table 3. The distribution network with the lowest insulation risk in
the distribution network area (set as the lowest level F) is set as the reference value of the factor value
Fa (Fa = 10), and the risk factor values of F, E, D, C, B and A are successively increased.

Table 3: Distribution network regional insulation risk factor check table

Insulation risk level Region Insulation risk degree Insulation risk value

A Mountain or village Extraordinary risk 100
B Downtown or a ≥ 30 Extraordinary risk 80
C General urban area or 20

≤ a < 30
Major risk 50

D Suburbs and towns of 10 ≤
a < 20

General risk 30

E Suburbs and towns of 5 ≤
a < 10

Lesser risk 15

F Town or 1 ≤ a < 5 Slight risk 10
Note: a is the load density of the power supply area, and its unit is MW/km2.

3.2 Insulation Fault Situation Level Evaluation
Firstly, the insulation fault risk factor Fe is obtained according to Eq. (1). Secondly, according to

the region where the distribution network is located, check the regional insulation risk check table of
the distribution network, and select the regional risk factor value Fa. Then, the total value Pf of the
insulation fault situation is obtained by Eq. (2).

Pf = Fe × Fa (2)

After calculating the total score value Pf , the evaluation result of the insulation fault situation
level of the distribution network can be obtained by comparing it with the score level. The power
distribution network insulation fault status level evaluation method sets up 6 status levels:

(1) Level I : The total value Pf > 8000 indicates that the insulation situation of the distribution
network is serious, and a high probability of insulation failure has occurred. It is necessary to
immediately locate the insulation damage location of the distribution network, troubleshoot
and replace the insulation fault, and restore the normal operation of the distribution network.

(2) Level II: 5000< total value Pf ≤ 8000, the distribution network insulation situation is very
poor, the future is highly likely to occur insulation faults affect the safe and stable operation of
the distribution network, need to take timely measures to replace or maintain poorly insulated
lines and equipment.

(3) Level III: 3000< total value Pf ≤ 5000, the insulation situation of the distribution network
is poor, and there is a greater probability of insulation faults in the future. It is necessary to
check, test regularly, and replace or maintain the weak insulation position. It is recommended
to monitor and inspect the insulation status of the distribution network every seven days.
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(4) Level IV: 1500< total value Pf ≤ 3000, the insulation situation of the distribution network
is normal, the insulation fault may occur in the future, it is necessary to regularly monitor
and inspect the insulation status of the distribution network, and design countermeasures for
insulation fault. It is recommended to inspect the insulation status of the distribution network
every 25 days.

(5) Level V: 1000< total value Pf ≤ 1500, the distribution network insulation situation is good,
there is no insulation fault, the distribution network can operate safely and stably, and it is
necessary to regularly monitor and inspect the insulation status of the distribution network. It
is recommended to inspect the insulation status of the distribution network every 40 days.

(6) Level VI: The total value Pf ≤ 1000, the distribution network insulation situation is very good,
the probability of insulation fault is low, and the long-term safe and stable operation of the
distribution network.

The classification of the distribution network insulation fault situation is shown in Fig. 1.

Figure 1: Distribution network insulation fault situation classification

4 Fault Situation Awareness of Distribution Network Based on PCA and Multi-Class SVM
4.1 Dimensionality Reduction of Distribution Network Data Based on PCA

In the initial insulation fault state perception process of the distribution network, although it is
hoped that there are rich data to comprehensively reflect the effects of various factors on the state of
the distribution network, the indicators obtained in most cases are complex and have different impacts
on the distribution network. The direct utilization of these indicators for predicting insulation fault
in distribution networks may not accurately perceive the situation, but it can potentially impact the
accuracy of the model. Therefore, it is necessary to identify and extract from massive multi-source
data and numerous fault feature indicators that reflect the high contribution degree of distribution
network state and high feature accuracy and eliminate redundant features with a low contribution
degree. In this paper, the 9-dimensional features mentioned in Section 2 are extracted and converted
to a 4-dimensional coordinate system by principal component analysis, and redundant features are
removed.

(1) The first step in dimensionality reduction is zero-mean processing. In Section 2 of this paper,
the data feature selected for dimensionality reduction is as follows: Fault residual voltage,
fault residual current, asymmetry, damping rate, zero sequence admittance angle, capacitive
current, off-tuning degree, transition resistance, and fault duration. First, the average values of
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9 features are obtained, respectively, and then the corresponding average values are subtracted
from the original data of each feature to obtain a new zero-mean feature matrix X n × m.

(2) The second step of data dimensionality reduction is to find the feature covariance matrix
and identify the correlation according to the feature covariance matrix. Eq. (3) represents the
feature matrix, where each column vector represents a set of data, and each set of data contains
several features. Each row of the column vector represents a feature of the data. Where n is the
number of features and m is the number of samples (that is, the number of groups of data).
The distribution network data feature number is 9, so set n = 9. Thus, the covariance matrix
A can be obtained as shown in Eq. (4).

(3) The third step in dimensionality reduction is to identify the principal components by solving
the eigenvalues and eigenvectors of the covariance matrix A using SVD. The covariance matrix
shown in Eq. (4) above exists in the singular value decomposition form shown in Eq. (5).
Eq. (5) is the singular value decomposition form of covariance matrix A, where U is composed
of the unitized AAT eigenvector and is the left singular vector, and V is composed of the
unitized ATA eigenvector and is the right singular vector. The

∑
matrix is a diagonal matrix

formed by taking the square root of the eigenvalues of AAT or ATA, and each element on
the main diagonal is a singular value arranged from largest to smallest. Therefore, we can use
Eq. (5) for singular value decomposition of covariance matrix A to solve its eigenvalues and
corresponding eigenvectors.

(4) The fourth step in data dimensionality reduction is to achieve data feature dimensionality
reduction by creating feature vectors that determine which principal components to retain and
recasting the data along the principal component axis. The 9 kinds of eigenvalues extracted
and calculated above are arranged in order from largest to smallest, and the first 4 largest
eigenvalues are found and the corresponding 4 eigenvectors are used to form a new coordinate
system. Finally, the original matrix extracted by the algorithm in this paper is projected to
a new coordinate system with the eigenvector matrix as the axis, and the original extracted
eigenmatrix is converted to 4-dimensional (4 < 9). In Eq. (5), if λ1 is the largest eigenvalue
of

∑
and α1 is the eigenvector corresponding to λ1, then α1 is the first principal component.

If λ2 is the second largest eigenvalue of
∑

, α2 is the eigenvector corresponding to λ2, i.e., the
second principal component. Similarly, the third principal component and the fourth principal
component can be found, that is, α3, α4, whose coefficients are the eigenvalues λ3 and λ4

corresponding to
∑

.

Xn×m =

⎛
⎜⎜⎝

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...
...

an1 an2 · · · anm

⎞
⎟⎟⎠ (3)

A = 1
n − 1

⎛
⎜⎜⎝

cov (c1, c1) cov (c1, c2) · · · cov (c1, cm)

cov (c2, c1) cov (c2, c2) · · · cov (c2, cm)
...

...
...

...
cov (cm, c1) cov (cm, c2) · · · cov (cm, cm)

⎞
⎟⎟⎠ (4)

A = U
∑

V T (5)
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4.2 Distribution Network Insulation Situational Awareness Based on Multi-Class SVM
According to the evaluation method of distribution network insulation fault situation level

described in Section 3.2 of this paper, a total of 6 insulation fault situation levels are set, and the
SVM is required to predict one of the 6 situation levels as output. Aiming at the multi-classification
problem of insulation fault situation level prediction in the distribution network, the SVM method
is proposed for insulation fault situational awareness. However, the traditional SVM usually uses the
binary classification pattern recognition method, which cannot be directly used to solve this multi-
classification problem. Therefore, in order to accurately perceive the insulation fault situation of the
distribution network, the multi-classification function of SVM needs to be expanded.

The objective of this paper is to achieve multi-classification functionality for the 6 levels of dis-
tribution network insulation fault states by constructing a combination of two classifiers. Specifically,
the 1-v-1SVMs algorithm is utilized to identify the insulation fault state in the distribution network. A
classifier is trained between two types of distribution network insulation fault situation levels based on
the 1-v-1SVMs method using a dataset specific to distribution network insulation faults. Consequently,
a total of 15 classifiers need to be trained for the 6 different insulation situation levels. The structure
of the multi-class SVM based on the 1-v-1 method can be seen in Fig. 2.

Figure 2: Multi-class SVM structure based on 1-v-1 method

The selection of SVM parameters for distribution network insulation fault situation awareness
mainly includes three steps: Selecting the appropriate kernel function, determining the parameters of
the kernel function, and selecting the regularization parameter C. In this paper, the radial basis kernel
function is chosen as the kernel function of SVM for the classification of insulation fault situation
level prediction in the distribution network. The choice of parameters gamma and C in the radial
basis kernel function will greatly affect the prediction performance of the subsequent SVM. To find
the optimal gamma value and regularization parameter C, the grid search method is used in this paper.
The gamma value of the radial basis kernel function is used to adjust the kernel width, and both the
gamma value and the C value in SVM control the complexity of the model.

In this paper, the grid search method is used to select the optimal combination of gamma and
C parameters. Set alternative parameter gamma to 0.001, 0.01, 0.1, 1.0, 10, 100; Set the value of
alternative C to 0.01, 0.1, 0.5, 1, 2, 10, and 100. There are 42 permutations and combinations of the
two parameters. Based on the Python platform, the GridSearchCV grid search module in the sklearn
machine learning toolkit is called to find the optimal combination of gamma and C in the permutation
combination of parameter gamma and parameter C. The approximate flow chart is shown in Fig. 3.
The search accuracy results of SVM grid search method based on the above parameter combination
are shown in Fig. 4.
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start

Access the distribution network fault database

Export the fault data training set and test set

Input the training set into the SVM

Set kernel function, kernel parameter, 
regularization parameter

Training SVM

The test set is fed into SVM for 
prediction

Accuracy>95%?

end

Find the optimal 
parameter 

(Grid search 
method)

No

Yes

Figure 3: SVM parameter selection flowchart

gamma
C

Accuracy

Figure 4: Grid search method SVM parameter selection results

In the three-dimensional coordinates in Fig. 4, the vertical coordinates represent the classification
accuracy, and the horizontal and vertical coordinates represent the values of parameters gamma and
C, respectively. It can be seen from the accuracy result chart that the corresponding accuracy of most
parameter combinations is below 90%, and the accuracy of parameter combinations gamma = 1 and
C = 0.1 is the highest, reaching 96.2%. Using the grid search method to replace the subjective setting of
SVM parameters can better avoid the phenomenon of underfitting and overfitting in SVM, and help
improve the perception accuracy of SVM in the face of new data situations. In the training process,
with the increase in training times, the change in model loss function is shown in Fig. 5, and the change
in accuracy rate is shown in Fig. 6. It can be seen that when the training times reach 25, the model loss
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function tends to a small value. When the training times reach more than 35, the prediction accuracy of
the model can be stable at more than 95%. At this point, the construction of the distribution network
insulation fault state sensing SVM has been completed.
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Figure 5: Loss function of model training and validation process
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Figure 6: Accuracy of model training and verification process

5 Simulation Verification

In this paper, based on the PSCAD/EMTDC simulation environment, a 10 kV distribution
network model with ineffective grounding at the neutral point is built to verify the effectiveness and
accuracy of the proposed method. The occurrence of insulation faults at different positions of the line
under different grounding modes of neutral points is simulated, respectively. The simulation model is
shown in Fig. 7. The five distribution feeders include overhead lines, cable lines, and cable-overhead
hybrid lines, assuming that the load is 0.5 + j0.25 MVA, the line parameters are listed in Table 4. Y N is
the neutral ground admittance of the system, and different Y N values can simulate different grounding



EE, 2024 13

modes. By setting various types of insulation faults in different distribution network line locations, the
distribution network fault data is obtained by running the simulation model.

Load 1

Overhead line Cable line

YN

110kV

10kV

Fault point

F0

F1 F6

F5

F2 F3

F7

F4

F8

F9

Line 1

Line 2

Line 3

Line 4

Line 5

Load 2

Load 3

Load 4

Load 5

Figure 7: Neutral point ineffective grounding 10 kV distribution system model

Table 4: Simulation parameters of the 10 kV neutral point ineffective grounding distribution network
line

Line type Phase sequence Resistance
(Ω·km−1)

Inductance
(mH·km−1)

Capacitance
(μF·km−1)

Overhead
line

Positive sequence 0.170 1.210 0.011
Zero sequence 0.230 5.480 0.008

Cable
line

Positive sequence 0.265 0.255 0.339
Zero sequence 2.540 1.019 0.280

In Fig. 5, F0−F9 is set as the fault points for constructing samples, and 10 fault types are set for
each fault point. Sample data is obtained through simulation by changing the transition resistance and
initial phase angle of the fault point. Among them, the fault points F1 and F2 are 4 km away from the
bus bar, F5 and F7 are 7 km away from the bus bar, F3 is 8 km away from the bus bar, F4, F6, F8, and F9

are 10 km away from the bus bar, and F0 is used to simulate the fault occurring at the neutral exit. The
fault data of F1−F3 and F0 points are used as the training set, the fault data of F4−F6 and F0 points
are used as the test set, and the fault data of F7−F9 and F0 points are used as the prediction set. The
distribution of the obtained training samples, test samples, and prediction samples is shown in Table 5.
According to the calculation method of insulation fault situation level described in Section 3 of this
paper, the situation level of the fault sample is calculated by using the fault index data, and the sample
is labeled. After removing redundant and incorrect samples, the sample quantity of each insulation
fault situation level is shown in Table 6.
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Table 5: Sample distribution of each fault type

Fault type Fault phase Fault resistance (Ω) Initial fault phase
angle

Number of training
samples/test
samples/prediction
samples

Single phase grounding fault A/B/C 0/100/1000/10000/arc 0/30/60/90/120/150 600/150/300
Two-phase ground fault AB/BC/AC 0/1/5 0/30/60/90/120/150 300/60/120
Two-phase short-circuit
grounding fault

AB/BC/AC 0/1/5 0/30/60/90/120/150 200/60/120

Three-phase short-circuit
grounding fault

ABC 0/1/5 0/30/60/90/120/150 100/30/60

Table 6: Sample quantity of each situation level

Data type Situation
level I

Situation
level II

Situation
level III

Situation
level IV

Situation
level V

Situation
level VI

Totality

Training 420 299 165 74 62 20 1040
Test 98 52 30 21 15 9 225
Prediction 175 130 102 77 56 10 550

Using the neutral point ungrounded method, the insulation fault phase, insulation fault location,
fault initial phase angle, transition resistance, and other factors were comprehensively considered,
and the test samples in Table 5 were used to test the prediction effect of the proposed insulation
situational awareness method. The results of situational awareness using PCA are shown in Table 7,
where situational awareness accuracy is the ratio of the number of accurate prediction samples to the
total number of corresponding situation-level samples. The results of situational awareness without
PCA are shown in Table 8. It can be seen that PCA can extract the indexes with high feature accuracy
and large contribution degree of distribution network state, and eliminate redundant features with
small contribution degree, which can help significantly improve the accuracy rate of distribution
network insulation fault situational awareness model prediction.

Table 7: Distribution network insulation fault situational awareness results (with PCA)

Actual
situation level

Prediction
level is I

Prediction
level is II

Prediction
level is III

Prediction
level is IV

Prediction
level is V

Prediction
level is VI

Accuracy
(%)

Level I 168 7 0 0 0 0 96.0
Level II 3 126 1 0 0 0 96.9
Level III 0 1 97 4 0 0 95.1
Level IV 0 0 2 74 1 0 96.1
Level V 0 0 0 1 54 1 96.4
Level VI 0 0 0 0 1 9 90.0
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Table 8: Distribution network insulation fault situational awareness results (without PCA)

Actual
situation level

Prediction
level is I

Prediction
level is II

Prediction
level is III

Prediction
level is IV

Prediction
level is V

Prediction
level is VI

Accuracy
(%)

Level I 115 29 15 7 7 2 65.7
Level II 28 74 17 5 3 3 56.9
Level III 19 10 46 18 6 3 45.1
Level IV 15 11 22 20 9 0 26.0
Level V 2 2 6 9 25 12 44.6
Level VI 3 1 0 0 1 5 50.0

As can be seen from Table 7, the perception accuracy of each level except situation level VI is above
95%. The perception accuracy of 4 situation levels is above 96%. The average perception accuracy of
6 situation levels is 95.08%, indicating that the situational awareness method proposed in this paper
has high accuracy and practicability. The perception accuracy of situation level VI is low because the
number of original samples of this level is too small. The perceptual error samples only deviate by one
situation level at most, and do not cross two situation levels, which indicates that the robustness of the
proposed method is strong. In the original samples, 85% of the samples were classified as I, II and III,
and only 15% were classified as IV, V and VI, which can focus on sensing the more urgent insulation
fault situation of the distribution network, and meet the requirements for accurate and rapid sensing
of insulation situation.

Since the neutral arc suppression coil and low resistance can affect each characteristic index of
insulation fault to a certain extent, to further verify the robustness of this method under different
neutral grounding modes, the grounding mode of the simulation model in Fig. 5 is changed to arc
suppression coil grounding and low resistance grounding. The inductance of the arc suppression coil
is 0.74 H and the small resistance is 10 Ω. Data of fault points F1, F2, F3 and F0 are selected for test
samples, and other conditions are the same as in Table 5. The insulation situational awareness results
are shown in Tables 9 and 10. It can be seen from the perception results that the change of neutral
grounding mode does not influence the prediction effect of the proposed method. This proposed
method can be well applied to systems with different neutral grounding modes, and the prediction
accuracy is much higher than the K-Nearest Neighbor (KNN) method, decision tree method,
Convolutional Neural Networks (CNN) method, Long Short-Term Memory (LSTM) method.

Table 9: Test result of neutral grounding through arc suppression coil

Fault location Sample size Accuracy (%)

KNN Decision tree CNN LSTM This paper method

F1 1250 93.4 91.2 93.4 93.1 97.0
F2 1250 92.6 87.8 92.9 92.5 96.5
F3 1250 91.8 90.1 92.0 92.2 96.8
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Table 10: Test result of neutral grounding through low resistance

Fault location Sample size Accuracy (%)

KNN Decision tree CNN LSTM This paper method

F1 1250 91.4 91.1 92.3 91.5 97.1
F2 1250 92.3 90.7 93.0 92.2 97.2
F3 1250 93.1 89.5 92.7 91.6 96.4

With the proposal of the carbon peaking and carbon neutrality goals, distributed power supply
(DG) has been widely connected to the distribution network. To verify the adaptability of the proposed
method under the DG access condition, a DG is connected to the end and middle of line 1 of the
distribution network simulation model as shown in Fig. 5. The DG model takes photovoltaic cells
and solid oxide fuel as an example: The photovoltaic cell model is established by simplifying and
deducing the equivalent circuit of photovoltaic power generation and according to the experimental
fitting compensation coefficient [26]. The fuel cell model uses the semi-empirical model to obtain
the differential equation for the partial pressure of gas, which is established according to the Nernst
equation [27]. Samples are selected from fault points F1, F4, F7, and other simulation parameters as
shown in Table 5.

The situational awareness test results are shown in Tables 11 and 12. It can be seen that the method
proposed in this paper still maintains a high insulation fault sample accuracy when connected to the
distributed power supply, and is higher than the CNN method, LSTM method, KNN method and
decision tree method.

Table 11: Test result of the impact of photovoltaic cell access on situational awareness

DG access
location

Fault
location

Sample
size

Accuracy (%)

KNN Decision tree CNN LSTM This paper
method

Line 1 middle F1/F4/F7 1250 90.3/91.7/92.3 93.6/92.9/92.3 93.1/93.8/93.6 92.6/93.8/92.7 96.2/96.5/96.1
Line 1 end F1/F4/F7 1250 93.1/93.4/92.5 92.7/92.5/92.1 93.0/93.1/92.5 92.2/92.5/92.1 95.9/96.1/96.1

Table 12: Test results of the impact of fuel cell access on situational awareness

DG access
location

Fault
location

Sample
size

Accuracy (%)

KNN Decision tree CNN LSTM This paper
method

Line 1 middle F1/F4/F7 1250 92.7/94.5/94.3 94.0/93.7/93.9 93.7/93.5/93.5 93.9/93.7/93.7 96.3/96.2/96.2
Line 1 end F1/F4/F7 1250 92.2/93.4/92.7 92.7/93.0/93.1 93.5/93.4/93.2 93.6/92.5/92.6 96.1/96.1/96.2
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6 Experimental Verification

In order to further verify the applicability of the distribution network insulation fault situational
awareness method proposed in this paper in the actual fault situation, the overhead line and cable
line fault simulation experiments were respectively conducted in the 10 kV true distribution network
experimental field, and the fault data obtained from the experiments were organized into validation
data sets. The topology diagram of the true type experimental field is shown in Fig. 8. The experiment
site is shown in Fig. 9.
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Figure 8: Topology diagram of real experimental field

Figure 9: Real distribution network experiment site

The 10 kV bus lines in the distribution network test field are connected to four outlet lines
(No. 1, No. 2, No. 3 and No. 4), respectively, with an ungrounded neutral point. Insulation faults
of different phases were intentionally set at distances of 2, 4, 6 and 8 km from the bus to simulate five
types of actual distribution network insulation faults: Single-phase arc grounding, single-phase direct
grounding, two-phase short circuit, two-phase ground contact and three-phase short circuit. Table 13
shows the sample distribution of the obtained verification data set while Table 14 presents the results
of actual distribution network insulation fault situational awareness using the proposed method.
Combined with Tables 13 and 14, it can be seen that the distribution network situation awareness
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method proposed in this paper can accurately identify the fault situation level under different fault
types, different fault phases, different fault resistances, and different fault initial phase angles, and can
still reliably perceive the fault situation under the condition of insulation faults, and can be well applied
to the actual distribution network.

Table 13: Sample distribution of validation dataset

Fault type Fault phase Fault resistance Initial fault phase angle Sample size

Single phase arc grounding A/B – 30/150 8
Single phase grounding B/C 10–1000 Ω 30/150 8
Two-phase grounding AB/BC 2–10 Ω 30/150 8
Two-phase short-circuit BC/AC 2–5 Ω 30/150 8
Three-phase short-circuit ABC 5 Ω 30/150 3

Table 14: Distribution network insulation fault situational awareness results

Actual situation level Validation sample size Accuracy (%)

Level I 7 100%
Level II 7 100%
Level III 7 100%
Level IV 7 100%
Level V 7 100%
Level VI 7 100%

7 Conclusion

Based on the analysis and research of the insulation fault mechanism of the distribution network,
this paper deeply explores the internal relationship of each characteristic quantity of insulation
fault and selects 9 characteristic indexes that can effectively characterize the insulation state of the
distribution line. Based on the comprehensive consideration of the fault nature and the region of
the distribution network, the insulation fault risk factor and regional risk factor of the distribution
network are constructed, the specific calculation formula and check table are given, and the insulation
fault situation is classified, which provides a theoretical basis for quantifying the insulation fault
situation of the distribution network.

In this paper, based on the evaluation method of the multi-feature index, the characteristic
quantity and situational awareness model of the initial insulation fault of the distribution network are
studied by taking the data of the distribution network in the existing distribution management system
as the research object. A dimensionality reduction method for distribution network data based on PCA
is proposed, and 9 state indicators of the distribution network are used to construct the insulation fault
feature data set, which can provide data support for subsequent insulation fault situational awareness.
This paper presents a multi-class SVM method based on the 1-v-1 method for initial insulation fault
situation awareness of the distribution network. The insulation fault situation simulation analysis of
10 kV distribution network under various grounding modes and DG access conditions is carried out,
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which verifies the effectiveness and correctness of the situation awareness method proposed in this
paper and provides a theoretical basis for the insulation risk prevention and control of the distribution
network.

The purpose of this paper is to propose a situational awareness method for the initial insulation
fault of the distribution network based on multi-feature index comprehensive evaluation. In this paper,
the calculation method of distribution network insulation fault risk level for situation awareness is
to obtain the risk level by comprehensively considering the fault factor and the influence factor of
the region where the distribution network is located and calculating the product of the two factors.
Therefore, the situation awareness method proposed in this paper may not be directly applied between
distribution networks with great differences. Given the distribution networks with large differences in
different periods, different anti-disturbance capabilities and different topological structures, a suitable
calculation method of insulation status level should be developed according to the specific conditions
of distribution networks. Different insulation situation evaluation methods consider different situation
level calculation methods and situation awareness results are different.

8 Prospect

The difficulty to find the insulation deterioration of distribution network in time, and the puzzle
of initial insulation fault development trend is the problematic issues in distribution inspection work.
The method presented in this paper can accurately perceive the fault development situation in the
initial stage of distribution network insulation fault, and the situational awareness result has high
accuracy, good robustness, strong operability, and high engineering application value. The method
proposed in this paper is expected to be applied to the field of distribution network security. In the
initial stage of insulation deterioration in distribution network, the rapid and accurate perception
of insulation fault situation can help prevent the deterioration of distribution network insulation,
provide a scientific basis for decision-making workers in distribution and transportation inspection,
help improve the efficiency of distribution and transportation inspection, and ensure the reliability
of distribution network power supply. For distribution networks with great differences in different
periods, different anti-disturbance capabilities and different topological structures, it is necessary to
establish a suitable insulation situation level calculation method combined with the specific situation
of distribution networks when applying the situational awareness method in this paper. Specifically, by
increasing the influence factors and increasing the weight for each influence factor, the fault situation
level calculation method under specific distribution network conditions can be obtained, and then
the situation awareness method in this paper can be applied. The guiding significance of situation
awareness results is different with different calculation methods of insulation fault situation level in
the distribution network.
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