@Article{fdmp.2009.005.283,
AUTHOR = {Ahmed Mezrhab, Hassan Naji},
TITLE = {Coupling of Lattice Boltzmann Equation and Finite Volume Method to Simulate Heat Transfer in a Square Cavity},
JOURNAL = {Fluid Dynamics \& Materials Processing},
VOLUME = {5},
YEAR = {2009},
NUMBER = {3},
PAGES = {283--296},
URL = {http://www.techscience.com/fdmp/v5n3/24453},
ISSN = {1555-2578},
ABSTRACT = {The objective of this paper is to assess the effectiveness of the coupled Lattice Boltzmann Equation (LBE) and finite volume method strategy for the simulation of the interaction between thermal radiation and laminar natural convection in a differentially heated square cavity. The vertical walls of the cavity are adiabatic, while its top and bottom walls are cold and hot, respectively. The air velocity is determined by the lattice Boltzmann equation and the energy equation is discretized by using a finite volume method. The resulting systems of discretized equations have been solved by an iterative procedure based on a preconditioned conjugate gradient method. Only the surface radiation is taken into account and the walls of the enclosure are assumed to be diffuse-grey. The achieved simulations have shown that the coupling between the lattice Boltzmann equation and the finite volume method gives excellent results. It was also observed that the surface radiation standardizes the temperature inside the cavity and causes a considerable increase of the heat transfer.},
DOI = {10.3970/fdmp.2009.005.283}
}