TY - EJOU
AU - Thumma, Thirupathi
AU - Shamshuddin, M.D.
TI - BUOYANCY RATIO AND HEAT SOURCE EFFECTS ON MHD FLOW OVER AN INCLINED NON-LINEARLY STRETCHING SHEET
T2 - Frontiers in Heat and Mass Transfer
PY - 2018
VL - 10
IS - 1
SN - 2151-8629
AB - This paper numerically investigates the magnetohydrodynamic boundary layer convective flow of an electrically conducting fluid in the presence of
buoyancy ratio, heat source, variable magnetic field and radiation over an inclined nonlinear stretching sheet under convective surface boundary
conditions. The Rosseland approximation is adopted for thermal radiation effects and the non-uniform magnetic field applied in a transverse direction
to the flow. The coupled nonlinear momentum, thermal and species concentration governing boundary layer equations are rendered into a system of
third order momentum and second order energy and mass diffusion ordinary differential equations via similarity transformations with appropriate
boundary conditions. The nonlinear, non-dimensional, well-posed boundary value problem is then solved with the implicit finite difference scheme
known as Keller Box Method. A detailed study of the influence of the emerging dimensionless parameters governing the flow on velocity, temperature
and concentration distributions is conducted. Also the evolution of skin friction coefficient, Nusselt number and Sherwood number values are depicted
graphically. Numerical results are validated with some limiting cases documented in previously testified results, and good correlation is confirmed.
This investigation is relevant to the delineation of space, astrophysical plasmas, polymer processing and extrusion of rubber and plastic sheets.
KW - *Keller-Box Method; Inclined Stretching sheet; Heat Source; Convective boundary conditions: Variable magnetic field; Buoyancy Ratio.*
DO - 10.5098/hmt.10.5