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ABSTRACT 

This paper presents a two-dimensional fluid-structure interaction numerical simulation of fluid flow over two horizontal heat exchange cylinders 
affected by a flapping reed in a domain. The reed is a thin flexible sheet made of elastic material with one end fixed on the trailing edge of the 
upstream cylinder. The effects of the reed length and the cylinder spacing on the periodic oscillations of the reed, the flow field and the heat transfer 
of the downstream cylinder. The results show that the oscillation of the reed in this paper is a single-period oscillate model. Compared to the case of 
cylinder without any measurement of heat transfer enhancement (clean cylinder), the heat transfer performance of the cylinder with the reed could be 
enhanced under certain conditions. For the case of the cylinder spacing S*= 1.5, as the length of the reed increases, the heat transfer of the 
downstream cylinder increases by up to 14% compared to the clean cylinder, while the domain resistance coefficient is almost unchanged. For the 
cases of cylinder spacing S*= 2.0, as the length of the reed increases, the heat transfer of the downstream cylinder gradually decreases, but the 
domain resistance coefficient gradually increases to 12%.   
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1. INTRODUCTION 

In recent years, obtaining higher heat transfer efficiency through 
enhanced heat transfer technology has become a hot issue in heat 
exchanger. According to Bergles' (1999) classification method of heat 
transfer enhancement by convection, it can be roughly divided into the 
passive enhancement technology and the active enhancement 
technology. The active type must rely on external power, such as 
mechanical force or electromagnetic force, while the passive type does 
not need to use other forms of power besides the power required to 
transport the fluid medium. Therefore, compared with the active type, 
the passive type reduces cost consumption and enhances equipment 
reliability (Beskok et al., 2012; Pourgholam et al., 2015). 

Heat transfer augmentations through the use of the passive type 
that enhance flow mixing and reduce mechanical loss have been the 
subject of much research effort. According to their movability, the 
passive enhancement technology can be divided into the fixed type and 
the flapping type. In the process of enhancing heat transfer, the flapping 
type produces deformation and displacement under the action of fluid. 
In various studies (Fiebig et al.,1993; Facchinetti et al., 2004;Yoo et al., 
2002; Song and Wang, 2013), scholars had conducted in-depth studies 
on the enhancement of heat transfer performance of the fixed type 
under different shapes and tube spacing. About the flapping type (Li et 
al., 2018; Gallegos et al., 2017; Lee et al., 2017; Lee et al., 2018; Chen 
et al., 2020; Khanafer et al., 2010), researchers have made great efforts. 
They studied the influence of different shapes, different placement 
forms, and different physical parameters of the flapping reed on the 
heat transfer performance of the channel. Compared with the fixed type, 
the flapping type heat transfer performance is better, and the channel 
pressure loss is smaller. Instead of modifying the channel surface, 
flapping vortex generator made of elastic material can be placed in the 

existing channel directly. Therefore, the fluid-structure coupling passive 
flapping reed enhanced heat transfer has become a hot topic in many 
engineering fields (Facchinetti et al., 2004). 

In summary, most of the previous studies focused on the influence 
of the flapping reed on the heat transfer of the channel, but did not 
study its’ influence on the heat transfer of the heat exchanger tubes. 
Therefore, this article is based on the enhanced heat transfer of the 
flapping reed. Take the variation of reed length and the change of the 
cylinder spacing as the research focus. By means of two-dimensional 
fluid-structure interaction (FSI) numerical simulation, research on the 
heat transfer enhancement and the fluid flow characteristics. 

2. PROBLEM STATEMENT AND 
MATHEMATICAL MODEL 

2.1 Physical Model 

The two-dimensional physical model is shown schematically in Fig. 1. 
The fluid enters the domain at the left boundary with a uniform velocity 
U and low temperature Tin and then flow across two cylinders with 
higher temperature Twall. There would be the heat exchange between the 
fluid and the cylinders due to the temperature difference in the domain. 
The diameter of the cylinder is D and the length of the domain CL=12D. 
With the set of the domain height CH=4.1D and the upper and lower 
boundaries walls are set to be symmetrical conditions. The setting is 
intentionally non-symmetric to prevent the dependence of the onset of 
any possible oscillation on the precision of the computation. The 
influence of upper and lower boundary to the flow and heat transfer can 
be ignored in this model (Khan et al., 2006). A flexible sheet is 
installed as the reed with one end fixed on the trailing edge of the 
upstream cylinders. The length of reed is L. The distance between the 
two cylinders is S. The right boundary is set to a constant pressure and 
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far enough from the cylinders. The surfaces of the two cylinders are no 
slip boundary condition. The surface of the reed is adiabatic and the 
thickness of it is H which is used only for the calculation of the solid 
inner stress. 

 
Fig. 1 Physical model 

2.2 Mathematical Model 

It is assumed in this investigation that the flow is two-dimensional, 
steady and incompressible. The FSI model calculation region contains 
the fluid domain and the solid domain. An arbitrary Lagrangian–
Eulerian formulation was adopted to describe the fluid motion. 
Furthermore, the governing equations for the fluid domain are the 
continuity and Navier–Stokes equations. Thus, the Navier–Stokes 
equations are described in tensor form as: 
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Where f  is the fluid density, iu  is the velocity tensor, t is the time,
ˆ ju is the moving velocity of the solid region and indices indicate vector 

components and differentiation in index (notation), ,ij j  is the stress 
tensor and if  is the body force per unit mass. For incompressible 
fluids, the principle of conservation of thermal energy is expressed by: 
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Where T  is the temperature, f  is the thermal conductivity of the 
fluid, and pC  is the specific heat at constant pressure. In addition, the 
governing equation for the solid domain of the FSI model can be 
described by the following equation: 

,ij js i s id f   
 (3) 

Where s  is the flapping reed density, ,ij j  is the solid Cauchy stress 

tensor, if  is the externally applied body force vector at time t and id  
represents the acceleration of the solid domain. 

While the inlet and outlet boundary conditions implemented in this 
investigation are summarized as follows: 
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About the top and bottom thermal boundaries and the thermal boundary 
conditions along the flapping reed are given by: 
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The thermal boundaries on the surface of both cylinders are as follows: 

wallT T  (6) 
The final set of boundary conditions is the FSI interfaces such that 

the conditions of displacement compatibility and traction equilibrium 
along the structure–fluid interfaces must be satisfied as follows 
respectively: 
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Where fd  and sd  are the displacements, f  and s  are the 

tractions of the fluid and the solid. 

2.3 Dimensionless Parameter Definition 

The problem is then described by 7 dimensionless parameters: 
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Where the superscript * represents non-dimensional parameters. H 

represents the non-dimensional thickness of the reed, which is a 
constant and the value is 0.2. The elasticity of the solid material is 
characterized by the Poisson ratio s  and E , which are fixed at 0.4 

and 2.5 respectively in this article. The Reynolds number used in this 
study is fixed at 200 for all cases. The heat transfer performance is 
evaluated by Nu number, which is defined as follows: 
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Where aveNu and Nu are the average heat transfer and local transfer 
performance of the downstream cylinder. In the expression, h  and h  
are the average convection heat transfer coefficient and local 
convection heat transfer coefficient of the downstream cylinder. They 
are summarized as follows: 
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Where   is the angle between the calculation point on the cylinder 
and the direction of the incoming flow. The resistance coefficient is 
used to evaluate the pressure drop of the fluid in all condition, which is 
as follows: 
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In this expression, p  is the domain pressure drop. The dimensionless 
amplitude of the free end of the flapping reed is shown as: 

y
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(12) 

Where yA  is the maximum amplitude of the free end of the flapping 

reed in the direction perpendicular to the incoming fluid. 

2.4 Numerical Method 

Simulation method used in this article is finite element formulation 
based on the Galerkin method, which was employed to solve the 
governing equations of a FSI model. According to the boundary 
conditions in Eqs. (4) and (8), the finite element method was used to 
discretize the continuity and momentum formulas. These equations are 
weighted with the virtual quantities of pressure and velocities. A 
variable grid-size system was employed to capture the rapid changes in 
the dependent variables especially near the wall where the major 
gradients occur inside the boundary layer. In addition, the Newton–
Raphson method was used to solve the discretized equations for the 
fluid and solid domain. The time step size of 0.005s was used until 

periodic convergence solution is achieved. 
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3. VERIFICATION NUMERICAL METHOD AND 
GRID INDEPENDENCE 

3.1 Numerical Simulation Method Verification 

The commercial software COMSOL Multiphysics is employed to 
simulate the FSI process. In order to verify the numerical method, the 

problems shown in Fig.2 are simulated and result of yA  and DC are 

compared with those reported by Turek et al. (2006) and Tian et al. 
(2014). In Fig.2, the fluid enters the domain at the left boundary with a 
parabolic velocity U which average is U .The upper and lower 
boundaries are the walls. The dimensionless length of the physical 
model is shown in the Fig. 2. 
 

 
 

Fig. 2 Physical model of verify numerical method 

 
The detail of comparison is listed in Table 1. It can be seen that the 

results obtained by the numerical method employed in this paper are 
consistent with the previous researches, which indicate that the 
numerical simulation method used in this paper is feasible. 

Table 1 Verification of A*
y and CD results 

Physical parameters Comparative case A*
y CD 

  =10 Re=100 

E*=1.4×103 

Turek 0.83 4.13 
Tian 0.78 4.11 
Present result 0.7836 4.1205 

  =1 Re=200 

E*=1.4×103 

Turek 0.36 2.30 
Tian 0.32 2.16 
Present result 0.3189 2.1723 

3.2 Grid independence verification 

The structured meshing is used for the physical model and the grid near 
the cylinders is densified. Different grid size of 38000, 46800, 65050, 
81050, 102050, 115000, 122000, 136050 and 140600 are employed 
respectively for the case of S*= 2.0 and L*= 0.7. Figure 3 shows a 
diagram of A*

y and Nuave under different grids size. Grid independence 
is achieved within 0.06% in A*

y number and 0.18% in Nuave with grid 
size of 122,000 which will be used for the follow-up calculations. 

4. RESULTS AND DISCUSSION 

S*= 1.5 and 2.0 are considered in this paper, since they represent the 
typical spacing adapt in industry that may cause stagnation vortexes 
between cylinders and would lead to heat transfer weakness (Marsters, 
1972). The set of flapping reed between two cylinders may be adverse 
to the formation of stable stagnation vortexes. 

4.1 Effects of the Length of Reed Under S*= 1.5 

When S*=1.5 and the length of the reed L*= 0.10, 0.25, 0.30, 0.35 and 
0.40 is investigated. Under this condition, the reed is the single-period 
flapping model (Connell et al. 2007). Figure 4 shows the yA  change 
with time under the limit condition of L*= 0.10 and 0.40 and the Fourier 
analysis results. There is an obvious peak at a certain frequency, while 
it can be inferred that the flapping model of reed is a self-sustaining 
periodic oscillation. 

 
 

Fig. 3 A*
y and Nuave under different grids size 

 
The percentage change rate of downstream cylinder Nuave and the 

domain CD under different reed length are compared with those of the 
clean cylinder and shown in Fig. 5. When the L* is increased from 0 to 
0.25, Nuave and CD hardly change. As L* further increases to 0.40, the 
percentage change rate of Nuave is reaches up to 12%. Simultaneously, 
CD changes little. 

Figure 4 shows amplitude of the free end of the reed Ay in the 
direction perpendicular to the mainstream is stable after t=2.5s and 2.9s, 
respectively and the oscillation of the reed is single periodic. Therefore, 
it is possible to simplify the analysis of Nu  on the downstream 

cylinder, and only analyze the upper half of the cylinder. All cases in 
this article, after 7 periods of stable oscillation of the reed, the heat 
transfer becomes stable, and the time average Nu  is calculated from 

8 to 12 oscillation periods. α (0°α180°) is the angle between the 
direction of the incoming flow and the point on the surface of the 
cylinder, as shown in Fig. 6. Nu  at α=0° is lower than other place. It 
is because that the distance between the cylinders is small which causes 
a flow stagnation point at the leading edge point of the downstream 
cylinder. As α increase to 50°, Nu  gradually increases, and then keeps 
a relative higher value until α80°. As the results of the twin vortices 
between the cylinders enhance fluid turbulence and heat transfer. At 
50°α125°, the heat transfer weakens due to the boundary layer 
gradually thickens. Along with α increase up to 180°, fluid departs from 
the surface of the cylinder which enhanced heat transfer. Results in 

local Nu rebounded. 

To quantify the difference, this paper selects the representative 
conditions when L*=0.25 and 0.40. Comparing the condition when L*=0 
and0.25, it is obviously that Nu  has a certain increase in the range of 
0°α7°, result of the flapping of the reed destroys the front stagnation 
point of the downstream cylinder. While in the range of 7°α180° the 
oscillating motion has almost no effect on the Nu , due to the shorter 
length of the reed which has little effect on the vortex between the 
cylinders and has almost no effect on the Nu . Comparing of L*=0 and 

0.40 shown in Fig.6, Nu  with the reed is obviously higher than Nu  
of the clean cylinder at 0°α18° and 113°α180°. Within the range 
of 18°α113°, there is not much difference. 

The reed flapping for one period under the conditions of L*=0 and 
0.40 the temperature gradient map are shown in Fig. 7. At t=4.04s, 
4.090s and 4.15s, during 0°α7° due to the small distance between the 
cylinders, there is a stable twin vortex in the flow between the cylinders, 
while the left end of the downstream cylinder is the stagnation point. 
The flapping reed thins or destroys the thermal boundary layer on the 
left end of the downstream cylinder, which also increases the chaos of 
the fluid between the cylinders, increases the temperature gradient, and 
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enhances the heat transfer performance. Fig. 8 shows the vorticity 
diagrams under the same condition. Due to the flapping of the reed, the 
vorticity at A and B marked in Fig. 8 is stronger than the vortex at same 
position of the clean cylinder. As the result of the increased vorticity, 
the vortices on the upper and lower sides of the downstream cylinder 
are squeezed and become smaller. This phenomenon brings the flow 
dead zone reduction and the mixing of the fluid of mainstream and the 
fluid at the downstream cylinder surface. Ultimately, heat transfer is 
enhanced. 

 

 
(a) L*= 0.10 

 

 
(b) L*= 0.40 

 
Fig. 4 

yAchange with time and the Fourier analysis results 

 

 
 

Fig. 5 Under S*=1.5 trend of Nuave and CD when the L* changes  
 

 
Fig. 6 L*= 0, 0.25 and 0.40 Variation trend of Nuα with α 

 

(a) t=4.04s L*=0.40 (b) t=4.04s L*= 0 

 
(c) t=4.09s L*=0.40 (d) t=4.09s L*= 0 

(e) t=4.15s L*=0.40 (f) t=4.15s L*= 0 

 
Fig. 7 L*= 0 and 0.40 temperature gradient at different times 

4.2 Effects of the Length of Reed Under S*=2.0 

Under the condition of S*=2.0, along with the length of the reed 
L*changes, Nuave and CD have a completely different trend from 
previous case. The analysis method is the same as S*=1.5. As shown in 
Fig. 9, the reed flapping, it also can be inferred that the flapping model 
of reed is a self-sustaining periodic oscillation. Fig. 10 shows under 
S*=2.0 change the percentage change rate of Nuave and CD when the L* 
changes, obviously contrary to the previous trend. Fig. 10 shows that 
the reed length increases from 0 to 0.25D, the percentage change rate of 
Nuave increases by 10.58%, and the CD hardly changes. As the length of 
the reed further increases, the Nuave decreases until no difference from 
the clean cylinder. Simultaneously, CD significantly increases to about 
12%. 
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(a) t=4.04s L*=0.40 (b) t=4.04s L* =0 

 
(c) t=4.09s L* =0.40 (d) t=4.09s L*=0 

 
(e) t=4.15s L* =0.40 (f) t=4.15s L* =0 

 
Fig. 8 L* =0 and 0.40 Vorticity at different times 

 

 
(a) L*=0.25 

 
(b) L*=0.70 

Fig. 9 L*=0.25 and 0.70 A*
y change with time and the Fourier analysis 

results 

Under S*=2.0, the trend of Nu  while α changed is shown in Fig. 11. It 
is obvious that when L*=0.25, Nu  at any α is greater than L*=0. The 
Fig.11 describes the flapping of the reed for a period the temperature 
gradient at different times. It can be seen from Fig.11, the flow between 
the tubes without the reed is basically in the symmetrical. There are 
obvious vortices between the cylinders, and symmetrical twin vortices 
appear. But when L*=0.25, the disturbance between the cylinders 
increases, which strengthens the mixing of the fluid between the 
cylinders and the main fluid. Comparing Fig. 13 the temperature 
gradient graph at L*=0.70 with Fig.12, after the length of the reed 
increases, the flapping amplitude increases. And because the existence 
of the reed hinders the mixing of the upper and lower parts fluid of the 
reed, the range of the dead zone increases, and the heat transfer of the 
downstream circular pipe is inhibited. 
 

 
Fig. 10 Under S*=2.0 trend of Nuave and CD when the L* changes 

 
 

 
Fig. 11 L*= 0, 0.25 and 0.70 Variation trend of Nu

with α 

5. CONCLUSION 

In this paper, a two-dimensional numerical simulation study of the 
effect of a flapping reed installed between the cylinders on the heat 
transfer and fluid flow effect is carried out. Mainly analyze the 
influence of the periodic flapping of the reed with different cylinder 
spacing and different length on the flow field and the heat transfer of 
the downstream cylinder. The result shows: 

1) When the cylinder spacing S*=1.5 is small, as the length of the 
reed increases from L*=0.10 to 0.40, the heat transfer performance of 
the downstream cylinder is continues to increase. At this time, due to 
the small distance between the cylinders, there is a stable twin vortex 
between them, and the left side of the downstream cylinder is the front 

A 

B 

A 

B 

A 

B 
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stagnation point. After reed is added, the thermal boundary layer on the 
left side of the cylinder is destroyed, the degree of confusion of the 
fluid near the surface is increased and the heat transfer performance is 
enhanced. 

2) In the case of the cylinder spacing S*=2.0 as the length of the 
reed increases from 0.10 to 0.70, the heat transfer performance of 
downstream cylinder continues to decrease until similar to clean 
cylinder. When the length of the reed is small, the flapping of the 
flexible body increases the disturbance between the cylinders. However, 
with the length increases, the reed hinders the flow of the upper and 
lower parts of itself. Eventually lead to the dead zone area is increased, 
and the heat transfer of the downstream cylinder is suppressed. 

3) Due to the existence of flapping reed, the stagnation point at the 
front point the downstream cylinder is destroyed, and the heat transfer 
performance is significantly increased. 

4) When the cylinder spacing S*=2.0, as the length of the reed 
increases, the domain CD gradually increase. Due to existence of the 
reed, suppress fluid mixing between cylinders. 

 

  
(a) t=4.84s (b) t=4.84s 

 
(c) t=4.89s (d) t=4.84s 

  
(e) t=4.94s (f) t=4.84s 

 
Fig.12 L*= 0 and 0.25 temperature gradient at different times 

 

  
(a) t=5.25s (b) t=5.85s 

 
Fig. 13 L*=0.70 temperature gradient at different times 

NOMENCLATURE 

A amplitude (m) 
Cp specific heat (J/(kgꞏK)) 
CL- domain length (m) 
CH domain height (m) 
D diameter of the cylinder (m) 
d displacements(m) 
E Young's modulus (Pa) 
H reed thickness (m) 

h convection heat transfer coefficient(W/(m2ꞏK)) 
L reed length (m) 
S cylinders spacing (m) 
T  temperature (K) 
t  time (s) 
U fluid velocity(m/s) 
Greek Symbols  
ρ density (kg/m3) 
 thermal conductivity(W/(mꞏK)) 
Superscripts  
* dimensionless parameters 
Subscripts  
f fluid 
s solid 
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