TY - EJOU
AU - Elsayed, Salah K.
AU - Agwa, Ahmed M.
AU - El-Dabbah, Mahmoud A.
AU - Elattar, Ehab E.
TI - Slime Mold Optimizer for Transformer Parameters Identification with Experimental Validation
T2 - Intelligent Automation \& Soft Computing
PY - 2021
VL - 28
IS - 3
SN - 2326-005X
AB - The problem of parameters identification for transformer equivalent circuit can be solved by optimizing a nonlinear formula. The objective function attempts to minimize the sum of squared relative errors amongst the accompanying calculated and actual points of currents, powers, and secondary voltage during the load test of the transformer subject to a set of parameters constraints. The authors of this paper propose applying a new and efficient stochastic optimizer called the slime mold optimization algorithm (SMOA) to identify parameters of the transformer equivalent circuit. The experimental measurements of load test of single- and three-phase transformers are entered to MATLAB code for extracting the transformer parameters through minimizing the objective function. Experimental verification of SMOA for parameter estimation of single- and three-phase transformers shows the capability and accuracy of SMOA in estimating these parameters. SMOA offers high performance and stability in determining optimal parameters to yield precise transformer performance. The results of parameters identification of transformer using SMOA are compared with the results using three optimization algorithms namely atom search optimizer, interior search algorithm, and sunflower optimizer. The comparisons are fairly performed in terms of the smallness of objective function. Comparisons shows that SMOA outperforms other contemporary algorithms at this task.
KW - Parameter extraction; transformer; equivalent circuit; slime mold algorithm
DO - 10.32604/iasc.2021.016464