TY - EJOU AU - Yang, Yuhua AU - Xu, Ke AU - Zhao, Bo AU - Liu, Nana AU - Zhou, Jun TI - The Bacteria Absorption-based Yolk-Shell Ni3P-Carbon @ Reduced Graphene Oxides for Lithium-Ion Batteries T2 - Journal of Renewable Materials PY - 2021 VL - 9 IS - 5 SN - 2164-6341 AB - Traditional carbon layer enwrapping active materials cannot easily realize perfect cladding. Therefore, it still cannot prevent the pulverization of active materials during the course of charging/discharging. In this paper, we utilize natural bacteria to absorb nickel acetate, the active materials Ni3P nanoparticles are well enwrapped, as a natural organisms surviving for billions of years, their cell walls have a perfect carbon structure, and the cell walls become carbon layer through high annealing temperature. Based on this, the yolk-shell Ni3P–carbon @ reduced graphene oxides paper is prepared, through a proper annealing temperature, the Ni3P particles disperse in the inner surface or both ends, so the active materials were prevented from dissolving into the electrolyte, so it may keep from invalidity during charging/discharging. The electrochemical performances display that it has stable and high capacities as Li-ion batteries (LIBs) anode. Its capacity can keep 200 cycles without any decrease, and especially its rate performance exhibits an excellent peculiarity, with the current density increasing from 400 to 1000 mA g−1 every 200 mA g−1 , its capacities decrease only 9.8%, 2.9% and 6.4%, and its can recover the same capacity when the current density comes back to 200 mA g−1 . It may be a fine choice for LIBs. KW - Freestanding; yolk-shell; bacteria; Ni3P; Lithium-ion batteries DO - 10.32604/jrm.2021.014525