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Abstract:Hepatocellular carcinoma (HCC) is a malignancy known for its unfavorable prognosis. The dysregulation of the

tumor microenvironment (TME) can affect the sensitivity to immunotherapy or chemotherapy, leading to treatment

failure. The elucidation of PHLDA2’s involvement in HCC is imperative, and the clinical value of PHLDA2 is also

underestimated. Here, bioinformatics analysis was performed in multiple cohorts to explore the phenotype and

mechanism through which PHLDA2 may affect the progression of HCC. Then, the expression and function of

PHLDA2 were examined via the qRT-PCR, Western Blot, and MTT assays. Our findings indicate a substantial

upregulation of PHLDA2 in HCC, correlated with a poorer prognosis. The methylation levels of PHLDA2 were found

to be lower in HCC tissues compared to normal liver tissues. Besides, noteworthy associations were observed between

PHLDA2 expression and immune infiltration in HCC. In addition, PHLDA2 upregulation is closely associated with

stemness features and immunotherapy or chemotherapy resistance in HCC. In vitro experiments showed that

sorafenib or cisplatin significantly up-regulated PHLDA2 mRNA levels, and PHLDA2 knockdown markedly decreased

the sensitivity of HCC cells to chemotherapy drugs. Meanwhile, we found that TGF-β induced the expression of

PHLDA2 in vitro. The GSEA and in vitro experiment indicated that PHLDA2 may promote the HCC progression via

activating the AKT signaling pathway. Our study revealed the novel role of PHLDA2 as an independent prognostic

factor, which plays an essential role in TME remodeling and treatment resistance in HCC.

Introduction

Hepatocellular carcinoma (HCC) comprises approximately
90% of primary hepatic malignancies and is frequently
derived from hepatic progenitor cells or hepatocytes [1,2]. It
is reported that HCC is predicted to be the sixth most
frequently diagnosed cancer and the fourth leading cause of
cancer deaths worldwide [3]. Although the early screening
and diagnostic methods of HCC have made significant
progress, the prognosis is still unsatisfactory. A cumulative
HCC recurrence after surgery is as high as 70% at five years
[4]. Moreover, molecular profiling still cannot predict the
outcomes of patients and the risk of recurrence after
successful surgery or ablation [5]. Thus, additional

biomarkers are urgently needed to improve prognosis or
predict treatment response.

The significance of the tumor microenvironment (TME)
in tumor development is gradually being discovered. The
constituent characteristics of TME include immune cells,
stromal cells, blood vessels, and extracellular matrix, in
which various adaptive and innate immune cells can
perform tumor-promoting or tumor-suppressive functions
[6]. In addition, cancer stem cells (CSCs) exhibit stemness
characteristics that contribute to tumor progression,
metastasis, recurrence, and drug resistance. Moreover, the
complex interaction network between CSCs and immune
cells further aggravates the difficulty of treatment [7].
Accumulating studies have also shown that the
dysregulation of the immune microenvironment promotes
the occurrence of drug resistance in tumors [8,9].

Pleckstrin-homology-like domain family A member 2
(PHLDA2), previously known as TSSC3 and IPL, is a cluster
of imprinted genes located on human chromosome 11p15.5
and is expressed by maternal alleles during normal
developmental processes [10,11]. Moreover, PHLDA2 was
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the first identified apoptosis-related imprinted gene that
regulates placental growth [12]. In addition, PHLDA2 has
been observed to display abnormal expression patterns in
several malignant tumors, such as glioma, hydatidiform
mole, osteosarcoma, and colorectal cancer [13–16].
However, the role of PHLDA2 in HCC has yet to be clearly
defined.

This study mainly explored the expression, prognostic
value, and association between PHLDA2 and genomic
variations in HCC. Meanwhile, the association between
PHLDA2 and various immune cells within the immune
microenvironment was determined. Through the enrichment
analysis of PHLDA2-related genes, the biological functions
and pathways PHLDA2 involved were explored. We also
found that PHLDA2 was significantly associated with tumor
stemness and involved in regulating drug resistance.

Materials and Methods

Data collection
The transcriptional expression profile, methylation, mutation,
copy number variation, and clinical information of liver
hepatocellular carcinoma (LIHC) were downloaded from
The Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/) for further analysis. The expression of
PHDLA2 across multiple cancer types was acquired from
TIMER2.0 (http://timer.cistrome.org/). The other expression
data and relevant clinical information were derived from the
HCCDB (http://lifeome.net/database/hccdb/home.html).
Additional data, such as GSE121153, were downloaded from
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). Single-cell data analysis was
obtained from the TISCH database (http://tisch.comp-
genomics.org/).

Prognostic analysis and nomogram
To evaluate the prognostic capability of PHLDA2 in HCC,
Kaplan-Meier (KM) curves were generated for overall
survival (OS), disease-specific survival (DSS), and progress-
free interval (PFI) using clinical data derived from
the TCGA LIHC cohort and the HCCDB6 cohort by the
package “survminer” and “survival” in R. Besides, the
package “survival” was used for proportional hazards
hypothesis testing and Cox regression analysis. The
independent prognostic value of PHLDA2 was evaluated
through univariate and multivariate analyses. A nomogram
was constructed based on the multivariate analysis by the
package “survival” and “rms.” A calibration plot was
employed to assess the performance of the nomogram, with
a closer alignment between the predicted model line and the
diagonal line indicating a better fit. The diagnostic receiver
operating characteristic (ROC) analysis and test were
conducted using the R package “pROC.”

Genomic alterations and heterogeneity
The R package “maftools” presented the mutation
landscape across various subgroups. Furthermore, the
inferHeterogeneity function of the R package “maftools” was
employed to calculate each sample’s mutant-allele tumor
heterogeneity (MATH). The ploidy, loss of heterozygosity

(LOH), and homologous recombination deficiency (HRD)
were obtained from previous studies [17].

Analysis of immune infiltration
The XCELL, MCPCOUNTER, CIBERSORT, TIMER, EPIC,
and QUANTISEQ algorithms, which utilize transcriptome
data, were employed to examine the composition and
proportion of various immune cells in HCC tissues within
the TIMER2.0 database [18]. The R package “ESTIMATE”
was utilized to compute stromal cells and immune cells in
tumor tissue. The immune and molecular subtypes were
derived from the TISIDB database (http://cis.hku.hk/
TISIDB/).

Biological enrichment
The differentially expressed genes (DEGs) were identified
through the R package “limma” between different
subgroups, with a threshold of |log2FC| > 1 and p.adj < 0.05.
Subsequently, the R packages “ClusterProfiler” and “org.Hs.
eg.db” were used to analyze pathway enrichment for Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Gene
Ontology (KEGG). The significance of enrichment of DEGs
in pre-defined gene sets, such as the Hallmark gene set, was
evaluated using Gene Set Enrichment Analysis (GSEA) to
assess their contribution to the phenotype. The expression
matrix was converted into a gene set enrichment score
matrix using Single-Sample Gene Set Enrichment Analysis
(ssGSEA) with the R package “GSVA” to obtain the
enrichment score of each gene set in each sample. The
EMT-related signatures were obtained from the EMTome
(http://www.emtome.org/).

Stemness analysis
Consensus clustering was applied to identify distinct
stemness-related clusters based on stemness-related gene
sets by the R package “ConsensusClusterPlus”—the
procedure calculated Euclidean distance with a km
approach. The maximum number of clusters was 6, and
80% of the sample was drawn 1000 times. The three proven
stemness-related gene sets were downloaded from the
MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/),
including “YAMASHITA LIVER CANCER STEM CELL
UP” (YAMASHITA UP), “YAMASHITA LIVER CANCER
STEM CELL DN” (YAMASHITA DN), and “WONG
EMBRYONIC STEM CELL CORE” (WONG CORE). A
unique gene set was derived from a previous study [19].

Estimation of immunotherapy and chemotherapy
The ImmuneCellAI algorithm (http://bioinfo.life.hust.edu.cn/
ImmuCellAI#!/) was used to predict the immunotherapy
response in different patients. The Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm (http://tide.
dfci.harvard.edu/) was also used to verify responders and
non-responders. Besides, the TIDE algorithm can provide a
TIDE score and MSI Expr Sig [20]. The R package
“oncoPredict” was used to predict the drug sensibility.

Cell culture and transfection
The human liver cancer cell lines HepG2, Hep3B, and SMMC-
7721, as well as the normal liver cell line LO2, were cultured in
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Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum and 1% penicillin-streptomycin
(Beyotime, China). The cultures were maintained at 37°C
and 5% carbon dioxide. The DMEM and fetal bovine serum
were obtained from Gibco, Thermo Fisher Scientific, in the
United States. The PHLDA2-specific small interfering RNAs
(siRNAs) and negative control (NC) were designed from the
Generay (Shanghai, China). The sequences of siRNA-1 (si-
1) were 5′-GGCAAGUACGUGUACUUCATT-3′ (F), 5′-U
GAAGUACACGUACUUGCCTT-3′ (R), and the sequences
of siRNA-2 (si-2) were 5′-GCUUCCACUCCAUCCU
CAATT-3′ (F), 5′-UUGAGGAUGGAGUGGAAGCTT-3′
(R). Cell transfection was performed using Lipo8000TM

Transaction Reagent (Beyotime, China) in 6-well cell culture
plates (LABSELECT, China).

RNA isolation and quantitative RT-PCR
Total RNA was extracted using a total RNA isolation reagent
(Biosharp, China), and the reverse transcription was carried
out using SweScript RT I first strand cDNA synthesis Kit
(Servicebio, China) to obtain cDNA. Then, quantitative RT-
PCR (qRT-PCR) was performed with 2 x SYBR Green
qPCR Master Mix (High ROX) (Servicebio, China). The CT
value was detected by a real-time PCR system (Kubo,
China). All were operated according to the kit instructions.
GAPDH was employed as an internal reference control, and
the primer sequences were 5′-GGAGCGAGATCCCTC
CAAAAT-3′ (F), 5′-GGCTGTTGTCATACTTCTCATGG-3′
(R). The primer sequences of the target gene PHLDA2 were
5′-CGACAGCCTCTTCCAGCTAT-3′ (F), 5′-CAGCGGA
AGTCGATCTCCTT-3′ (R). The primers were synthesized
at Springen (Nanjing, China).

Protein extraction and western blotting
RIPA lysis buffer (Beyotime, China) was used for cellular
protein extraction. Equal amounts of protein were separated
by SDS-PAGE (Beyotime, China) and transferred onto a
PVDF membrane (Merck, Darmstadt, Germany), then
blocked with 5% bovine serum albumin (BSA) (Servicebio,
China) in tris-buffered saline (Servicebio, China) for one
hour at room temperature. The membrane was subjected to
incubation with specific primary antibodies at a temperature
of 4°C for the duration of one night, after which it
underwent incubation with suitable secondary antibodies
conjugated with horseradish peroxidase (Servicebio, China)
for one hour at ambient temperature. The signals were
subsequently detected by employing an enhanced
chemiluminescence reagent (Beyotime, China) and subjected
to chemiluminescent detection (Tanon, Shanghai, China).
The primary antibodies for GAPDH, AKT, and
phosphorylated-AKT (p-AKT) were purchased from the
Cell Signaling (Massachusetts, USA).

MTT assay
Transfected cells were distributed into 96-well plates at a
density of 4000 cells per well. Following overnight
adherence, the culture medium was substituted with 100 μl
of fresh medium containing varying concentrations of
sorafenib (Macklin, Shanghai, China). The cells were then

cultured for either 24 or 48 h. Subsequently, 5 mg/ml of
MTT (Beyotime, China) was introduced to each well and
incubated for 4 h. The supernatant was discarded, 150 μL
DMSO (Beyotime, China) was added, and a microplate
reader (ALLSHENG, Hangzhou, China) measured the OD
value at 490 nm.

Statistics
The expression levels and scores between the two groups were
examined using the Wilcoxon test. The Spearman correlation
test was employed to conduct correlation analyses. The one-
way ANOVA and Kruskal-Wallis tests were utilized to
compare the difference between more than two groups. A t-
test was employed to assess the disparities between the two
groups for the experimental data. Each experiment was
performed three times. Statistical significance was as follows:
ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001.

Results

The expression and prognosis value of PHLDA2 in HCC
To determine the expression of PHLDA2 in both tumor and
normal tissues, we conducted a query of the TIMER
database. The results indicated that PHLDA2 exhibited a
high level of expression in 16 different cancer types
(Fig. 1A), including BRCA, CESC, CHOL, COAD, ESCA,
GBM, HNSC, KIRC, LIHC, LUAD, LUSC, PAAD, READ,
STAD, THCA and UCEC. Then, we searched PHLDA2
expression specifically in hepatocellular carcinoma (HCC)
using the HCCDB database. Our findings revealed that the
expression level of PHLDA2 was significantly elevated in
HCC tissues compared to adjacent liver tissues across
multiple cohorts (Fig. 1B). According to the TCGA
database, the expression of PHLDA2 was similarly higher
in HCC tissues compared to paired liver tissues (Fig. 1C).
Furthermore, the correlation between PHLDA2 and clinical
features was also explored. The clinical features of HCC
patients are presented in Table 1. The PHLDA2 expression
was higher in patients with T2/3/4, Stages II/III/IV, and
status dead (Fig. 1D). We also investigated the significance
of PHLDA2 in the prognosis and diagnosis of HCC
patients. The findings indicated a potential association
between elevated PHLDA2 expression and a poorer
prognosis in HCC patients. In the TCGA cohort, the
PHLDA2-high HCC patients had a relatively shorter OS,
DSS, and PFI (Figs. 1E–1G). Consistent with these results,
we verified the effect of PHLDA2 on HCC prognosis in the
HCCDB6 cohort (Fig. 1H). Based on univariate and
multivariate Cox regression analysis, PHLDA2 was found
to be the only independent risk factor for HCC patients
(Figs. 1I–1J). Moreover, a nomogram including PHLDA2
and multiple clinicopathological factors was generated,
which provided a semi-quantitative technique for the
prognosis of patients (Fig. 1K). The calibration curve
demonstrated a satisfactory alignment between actual and
nomogram-predicted survival outcomes (Fig. 1L). The
diagnostic ROC curve of PHLDA2 also revealed the value
of PHLDA2 in the diagnosis of HCC, with the area under
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curve (AUC) = 0.698 (Fig. 1M). The findings above indicate a
significant upregulation of PHLDA2 in hepatocellular
carcinoma (HCC), which is associated with a poorer
prognosis.

The methylation levels of PHLDA2 and genomic alterations in
HCC
Then, we explore the regulatory factors of PHLDA2
overexpression in HCC. The methylation levels in the

FIGURE 1. The expression and prognostic value of PHLDA2 in HCC. (A) The expression of PHLDA2 in various malignant tumors and
normal tissues in the TIMER2.0. (B) The expression of PHLDA2 in HCC and liver tissues from the HCCDB. (C) PHLDA2 expression in
HCC compared to adjacent liver tissues in the TCGA. (D) The relationships between PHLDA2 and clinical characteristics in HCC,
including T stage, stage, and status. (E–H) Kaplan–Meier analysis for PHLDA2 in the TCGA and HCCDB-6 cohorts. (I, J) The forest
plot for univariate and multivariate analysis of PHLDA2 and clinical features for OS from the TCGA. (K) The nomogram plot based on
PHLDA2 and clinicopathological factors for OS. (L) The calibration plot for nomogram validation. (M) The diagnostic ROC curve for
PHLDA2. *p < 0.05; **p < 0.01; ***p < 0.001.
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promoter region of PHLDA2 were first analyzed. Our
analysis reveals considerably lower levels of PHLDA2
promoter methylation in HCC tissues compared to normal
liver tissues through the UALCAN database (Fig. 2A).
Moreover, the PHLDA2 promoter methylation levels were
reduced in advanced stages and grades (Figs. 2B and 2C).
Likewise, the expression of PHLDA2 also showed a
negative correlation with methylation level based on the
cBioPortal database (Fig. 2D). We further analyzed the
methylation level of CpG islands located in the promoter

region of PHLDA2 (region from -1500 nucleotide
upstream to the transcription start site) in the TCGA
database, and the results showed that the methylation level
of PHLDA2 was lower in HCC tissues than in normal liver
tissues (Fig. 2E). These results suggest that the elevated
expression of PHLDA2 in HCC may be influenced by
methylation modifications. Next, the alterations of
PHLDA2 was further explored. PHLDA2 had 8% genetic
alternations, including amplification and mRNA high,
according to the cBioPortal database (Fig. 2F). Besides, we
also analyzed the relationship between PHLDA2 and
MATH, ploidy, LOH, and HRD, which are common
indicators of genomic heterogeneity (Figs. 2G–2J). The
results revealed that PHLDA2 was positively correlated
with them. Then, the different mutational landscapes
between the PHLDA2-low and PHLDA2-high subgroups
were also compared. In the high PHLDA2 expression
subgroup, TP53, an important tumor suppressor gene, is
more prone to mutations, with a 37.5% mutation rate.
However, CTNNB1, a key downstream component of
typical WNT signaling pathways, has a higher mutation
frequency, with a 31.9% mutation rate in the low PHLDA2
expression subgroup (Figs. 2K and 2L). These results
suggested that the increased expression of PHLDA2 in
HCC is prone to genomic mutations, leading to genomic
instability, which may further lead to the occurrence and
development of HCC.

PHLDA2 is correlated with immune cell infiltration in HCC
Next, we explored the relationship between the PHLDA2
expression and immune cells infiltration. Evidence has
revealed that the tumor immune microenvironment plays a
crucial role in tumor progression [21]. Based on XCELL,
MCPCOUNTER, CIBERSORT, TIMER, EPIC, and
QUANTISEQ algorithms, we obtained the composition and
proportion of various immune cells in the tumor immune
microenvironment of HCC in the TCGA cohort. The
construction of immune cell infiltration patterns differed in
the PHLDA2 low and high subgroups, and the PHLDA2
high expression subgroup showed more abundant immune
cell infiltration (Fig. 3A). The correlation analysis showed
that PHLDA2 could increase the infiltration levels of
myeloid dendritic cells, macrophage cells, T cells regulatory
(Tregs), T cells CD4+, T cells CD8+, B cells, and NK cells in
HCC, and PHLDA2 would reduce the proportion of
endothelial cells (Figs. 3B and 3C; Suppl. Fig. S1). The
Single-cell data also suggested that PHLDA2 was associated
with various immune cells (Suppl. Fig. S2). In addition, we
analyzed the relationship between PHLDA2 expression and
immune-related molecules. The heatmap showed that
PHLDA2 was positively correlated with most
immunostimulatory molecules in HCC (Fig. 3D). Besides,
the violin chart showed that the expression of most
immunosuppressive molecules was higher in the PHLDA2-
high subgroup (Fig. 3E). Furthermore, we found that there
existed differential expression of PHLDA2 in different
immune and molecular subtypes according to the TISIDB
database, and the expression of PHLDA2 was higher in
wound healing (C1) and icluster1 (Figs. 3F and 3G). C1 had
elevated expression of angiogenic genes and a high

TABLE 1

The associations between PHLDA2 and clinical features of HCC
patients from the TCGA

Characteristics Low expression High expression p value

Age 0.719

<=60 87 (23.3%) 90 (24.1%)

>60 100 (26.8%) 96 (25.7%)

Gender 0.581

Female 63 (16.8%) 58 (15.5%)

Male 124 (33.2%) 129 (34.5%)

Pathologic T stage 0.647

T1 96 (25.9%) 87 (23.5%)

T2 46 (12.4%) 49 (13.2%)

T3 37 (10%) 43 (11.6%)

T4 5 (1.3%) 8 (2.2%)

Pathologic N stage 0.169

N0 120 (46.5%) 134 (51.9%)

N1 0 (0%) 4 (1.6%)

Pathologic M stage 0.159

M0 129 (47.4%) 139 (51.1%)

M1 0 (0%) 4 (1.5%)

Pathologic stage 0.089

Stage I 91 (26%) 82 (23.4%)

Stage II 45 (12.9%) 42 (12%)

Stage III 38 (10.9%) 47 (13.4%)

Stage IV 0 (0%) 5 (1.4%)

Histologic grade 0.042

G1 36 (9.8%) 19 (5.1%)

G2 89 (24.1%) 89 (24.1%)

G3 53 (14.4%) 71 (19.2%)

G4 5 (1.4%) 7 (1.9%)

Adjacent hepatic
tissue inflammation

0.046

None 73 (30.8%) 45 (19%)

Mild 46 (19.4%) 55 (23.2%)

Severe 11 (4.6%) 7 (3%)

BMI 0.026

<=25 78 (23.1%) 99 (29.4%)

>25 90 (26.7%) 70 (20.8%)
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proliferation rate based on previous research. Besides, the
cytolytic activity score (CYT) is a well-established biomarker
that predicts the presence of tumor-infiltrating lymphocytes
based on gene expression [22]. We observed that the CYT
score positively correlated with PHLDA2 expression in HCC

tissues (Fig. 3H). Moreover, the Stromal, Immune, and
ESTIMATE Scores obtained by the ESTIMATE algorithm
also differed between the PHLDA2-low and PHLDA2-high
subgroups. The scores were higher, obviously, in the
PHLDA2-high subgroup. In contrast, the tumor purity was

FIGURE 2. Analysis of methylation and genetic heterogenicity in HCC. (A) The promoter methylation level of PHLDA2 in HCC from the
UALCAN. (B, C) The promoter methylation of PHLDA2 in HCC of various tumor stages and tumor grade by the UALCAN. (D) The
relationship between the PHLDA2 and methylation in the cBioPortal. (E) The methylation of CpG islands in the PHLDA2 promoter
region from the TCGA. (F) The genomic alterations of PHLDA2 in TCGA-LIHC from the cBioPortal. (G–J) The correlations between the
PHLDA2 and MATH, ploidy, LOH, and HRD. (K, L) The somatic landscape of HCC in PHLDA2-low and PHLDA2-high subgroups. *p <
0.05; **p < 0.01; ***p < 0.001.
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lower in the PHLDA2-high subgroup (Figs. 3I and 3J). These
results indicated that PHLDA2 could recruit more immune
cell infiltration to remodel the immune microenvironment
of HCC.

Elucidation of the potential functions and molecular
mechanisms of PHLDA2 in HCC
And next, to explore the underlying signaling pathways and
functional mechanisms that PHLDA2 may participate in, we

FIGURE 3. Correlation of PHLDA2 with immune infiltration in HCC. (A) The heat map of immune cell infiltration in PHLDA2-low and
PHLDA2-high subgroups by the TIMER. (B, C) The lollipop graph showed the correlation between the PHLDA2, macrophages, and Tregs.
(D) The Spearman correlation among PHLDA2 and several immunostimulators. (E) The expression of immunoinhibitors between PHLDA2-
low and PHLDA2-high subgroup. (F, G) PHLDA2 expression in different immune subtypes and molecular subtypes from the TISIDB. (H)
The correlation between CYT and the PHLDA2. (I) The violin plot showed the Tumor Purity in the PHLDA2-low and PHLDA2-high
subgroups. (J) The StromalScore, ImmuneScore, and EstimateScore in PHLDA2-low and PHLDA2-high subgroup by ESTIMATE. *p <
0.05; **p < 0.01; ***p < 0.001.
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firstly identified 513 down-regulated and 558 up-regulated
DEGs between patients with high and low expression of
PHLDA2 in the TCGA database (Fig. 4A). The GO and
KEGG pathway enrichment analysis was then performed
based on the up-regulated genes. The results showed that
these genes were primarily involved in the WNT signaling
pathway, PI3K-AKT signaling pathway, TNF signaling

pathway, extracellular matrix organization (ECM), cytokine
activity, and chemokine activity, etc. (Fig. 4B). The GSEA
analysis of the Hallmark gene set was mainly enriched in
terms of the epithelial-mesenchymal transition (EMT),
angiogenesis, TNF signaling via NF-κB, and TGF-β
signaling, etc. (Fig. 4C). In addition, we constructed the
interaction network of co-expressed genes and the

FIGURE 4. PHLDA2-related genes and functional enrichment analysis. (A) The enhanced volcano plot of differential genes between
PHLDA2-high and PHLDA2-low subgroups. (B) Functional enrichment analysis by GO and KEGG. BP, Biological Process; CC, Cellular
Component; MF, Molecular Function. (C) GSEA analysis of Hallmark gene set. (D, E) The protein-protein interaction networks of
PHLDA2 from the Gene MANIA and STRING database. (F) Angiogenesis score between PHLDA2-high and PHLDA2-low subgroup. (G)
The heat map of the EMT signature is in the PHLDA2-high and PHLDA2-low subgroups. ***p < 0.001.
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protein-protein interaction networks of PHLDA2 through the
GeneMANIA and STRING databases (Figs. 4D and 4E).
Genes co-expressed with PHLDA2, such as SERPINE1,
SERPINB5, SERPINB2, and TFPI2, were primarily involved
in endopeptidase regulator activity and peptidase regulator
activity from the GeneMANIA database. We also searched
for the signature of angiogenesis on the MSigDB database
and used the ssGSEA method to calculate the enrichment
score. We found that the PHLDA2-high expression group
had higher scores, consistent with the above results
(Fig. 4F). Furthermore, we also found several EMT-related
signatures from the EMTome database and used the
ssGSEA method to calculate the score. The results showed
that the PHLDA2-high expression subgroup also had higher
scores (Fig. 4G). In summary, enrichment analysis results
suggested that PHLDA2 may play a role in promoting
tumor development by angiogenesis and EMT, and
PHLDA2 may be involved in the regulation of the WNT
signaling pathway, PI3K-AKT signaling pathway, TNF
signaling pathway, and TGF-β signaling pathway.

PHLDA2 is associated with stemness phenotype
And then we examine the association between PHLDA2
expression and the stemness phenotype in HCC. Three
established gene sets on stemness were obtained from the

MSigDB database. A specific stemness gene set linked to
HCC was also identified based on a prior investigation [19].
Subsequently, consensus clustering was executed on the
TCGA cohorts using the unsupervised K-means consensus
clustering method, wherein the YAMASHITA UP gene set
revealed the presence of three stable subgroups exhibiting
enhanced stemness. The average expression of genes in the
YAMASHITA UP gene set was elevated with increased
stemness. The expression of PHLDA2 was also promoted
with increased stemness (Fig. 5A). Comparable outcomes
were observed when employing the YAMASHITA DN gene
set, WONG core gene set, and a specific gene set comprising
19 stemness-related genes (Figs. 5B–5D). We also analyzed
the correlation between PHLDA2 and stemness-related
genes in the HCCDB database. As expected, PHLDA2
showed a positive correlation with CD24, CD47, EPCAM,
ICAM1, MYC, PROM1, SALL4, SOX9, THY1, and ZIC2, all
of which were positively associated with stemness.
Conversely, PHLDA2 exhibited a negative correlation with
ALB and HNF4A, both of which were negatively associated
with stemness (Fig. 5E). At the same time, we conducted an
analysis on the relationship between PHLDA2 and ECM-
related genes, including ACTA2, COL1A1, COL1A2, FAP,
FLNA, LOX, PDGFRB, S100A4, and VIM, revealing a
positive correlation between them (Fig. 5F). According to

FIGURE 5. PHLDA2 is related to stemness characteristics. (A–D) The average expression level of the gene set and PHLDA2 in subgroups
identified by the YAMASHITA UP gene set (A), the YAMASHITA DN gene set (B), the WONG CORE gene set (C), and 19 liver CSC
markers (D). (E, F) The correlations between the PHLDA2 expression and stem-related genes (E) and ECM-relative genes (F) expression
in the HCCDB database. (G) The correlation heat map of PHLDA2 and MMR-related gene expression. *p < 0.05; **p < 0.01; ***p < 0.001.

THE ROLE OF PHLDA2 IN HEPATOCELLULAR CARCINOMA 9



previous studies, DNA mismatch repair (MMR) also
contributed to cancer stemness maintenance [23,24]. Hence,
the correlation analysis between PHLDA2 and MMR-related
genes was performed, and the result showed a positive
correlation between PHLDA2 and MMR-related genes,
including MLH1, MLH3, PMS1, and MSH2 (Fig. 5G). In all,
PHLDA2 may play an essential role in tumor stemness
maintenance.

PHLDA2 could predict responses to immunotherapy and
chemotherapy
CSCs are considered to be the cause of treatment resistance
[25,26]. So, we continued to investigate the role of PHLDA2
in the treatment of HCC. We estimated the responsiveness
of HCC patients to immunotherapy by ImmuCellAI

algorithms. By comparing the expression of PHLDA2
between responder and non-responder, we found that
PHLDA2 expression was higher in non-responsive patients
(Fig. 6A). We also verified the difference in PHLDA2
expression between responder and non-responder via the
TIDE algorithms in the TCGA cohort and the HCCDB6
cohort, respectively (Figs. 6B and 6E). The TIDE score was
higher in patients with higher PHLDA2 expression
(Fig. 6C), which suggested that these patients are more
prone to immune escape. We also found that the MSI score
in the PHLDA2-low subgroup was higher (Fig. 6D). In
addition, The TIME phenotypes also impact
immunotherapy response, according to previous reports
[27]. Patients classified as TIME-3 accounted for a higher
proportion in the PHLDA2 high subgroup (Fig. 6F).

FIGURE 6. PHLDA2 could predict the clinical benefits of immunotherapy and chemotherapy. (A, B) PHLDA2 expression between responder
or non-responder patients according to the ImmuCellAI (A) or TIDE (B) algorithm in the TCGA cohort. (C) The TIDE score is between the
PHLDA2-low and PHLDA2-high subgroups. (D) The MSI signature score between the PHLDA2-low and PHLDA2-high subgroup. (E)
PHLDA2 expression between responder or non-responder patients according to the TIDE algorithm in the HCCDB6 cohort. (F) The
distribution of TIME subtypes in the PHLDA2-low and PHLDA2-high subgroups. (G) The scatter plot showed the correlation between
the TIME score and the PHLDA2 expression. (H) The correlations between the PHLDA2 and PDCD1. (I) The PHLDA2 expression
between parental and sorafenib-resistant group from the GSE121153. *p < 0.05; ***p < 0.001.
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Meanwhile, the TIME score was negatively correlated with
PHLDA2 (Fig. 6G). Besides, PHLDA2 was also negatively
correlated with PDCD1 (Fig. 6H). These results suggested
that patients with low expression of PHLDA2 had a higher
effective rate of immunotherapy. In addition, concerning
chemotherapy, we compared the expression level of
PHLDA2 between the resistant and non-resistant groups in
the GSE121153 cohort. We then found that the expression
of PHLDA2 was higher in the resistant group, which
revealed that PHLDA2 may play a role in sorafenib
resistance (Fig. 6I). Finally, we predicted drugs to which
patients with high PHLDA2 expression might be sensitive.
The result showed that with the increase of PHLDA2

expression, the IC50 of midostaurin, AZ682, pemetrexed,
and GNF2 decreased (Suppl. Fig. S3). According to the
findings, the treatment effect of patients with lower
PHLDA2 expression may be better after chemotherapy and
immunotherapy.

Relevant experimental verification
Last but not least, we carried out some experiments to verify
the results of some bioinformatics analysis. QRT-PCR
results demonstrated that PHLDA2 was overexpressed in
several HCC cell lines, such as HepG2, Hep3B, and SMMC-
7721, compared with the human normal hepatocyte cell
lines, LO2 cell (Fig. 7A). Because PHLDA2 had the highest

FIGURE 7. Relevant experimental verification. (A) The expression of PHLDA2 in different cell lines, including LO2, HepG2, SMMC-7721,
and Hep3B. (B) qRT-PCR results showed that PHLDA2 had knockdown efficiency after transfection of Hep3B cells with two different siRNAs.
(C) WB results revealed p-AKT, AKT, and GAPDH protein expression levels in the NC, si-1, and si-2 groups. (D) The expression of PHLDA2
in Hep3B cells treated with different concentrations of TGF-β. (E) The scatter plot showed the correlation between PHLDA2 and TGF-β in the
TCGA database. (F) The expression of PHLDA2 in sorafenib-resistant and parental groups. (G, H) The expression of PHLDA2 in Hep3B cells
treated with different sorafenib (G) and cisplatin (H) concentrations. (I) The MTT assay showed the viability of the Hep3B cells after 48 h in
gradient doses of sorafenib. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

THE ROLE OF PHLDA2 IN HEPATOCELLULAR CARCINOMA 11



expression in Hep3B cells, we chose Hep3B cells for
subsequent experiments. The silencing efficiency of si-RNAs
in Hep3B cells is shown in Fig. 7B. After transfection with
si-RNAs, the expression of PHLDA2 was significantly
decreased. Next, we compared the activity of AKT between
si-1, si-2, and NC groups in Hep3B cells. The WB results
showed that the Phosphorylated-AKT (p-AKT) protein of
si-1 and si-2 groups was decreased (Fig. 7C; Suppl. Fig. S4).
In addition, we treated Hep3B cells with TGF-β cytokines.
The results showed that the expression of PHLDA2 in cells
treated with TGF-β was increased (Fig. 7D). The correlation
analysis also showed that PHLDA2 and TGF-β were
positively correlated (Fig. 7E). Finally, we investigated
whether PHLDA2 would play a role in drug resistance. We
compared the expression of PHLDA2 between the
sorafenib-resistant and parental groups of Hep3B. The
results of qRT-PCR showed that the expression of PHLDA2
was increased in the sorafenib-resistant group (Fig. 7F). In
addition, with the increase of sorafenib and cisplatin
concentrations, the expression of PHLDA2 also increased
(Figs. 7G and 7H). MTT results revealed that the OD490
value ratio was lower in the si-1 and si-2 groups (Fig. 7I).
These results indicated that Hep3B is more sensitive to
sorafenib after the knockdown of PHLDA2.

Discussion

Hepatocellular carcinoma (HCC) is a highly prevalent and
lethal malignant tumor that poses a significant threat to
public health. Recently, there has been a growing interest in
exploring the tumor immune microenvironment (TME) and
its potential as a target for therapeutic interventions,
particularly immunotherapy [28]. However, the lack of
reliable biomarkers to assess prognosis and treatment
response in HCC patients [29], coupled with the
heterogeneous nature of patient responses to existing
immunotherapies [30], underscores the urgent need to
develop more effective biomarkers. This study has
discovered that PHLDA2 induces alterations in the immune
microenvironment, exhibits a correlation with cancer
stemness and facilitates the development of treatment
tolerance.

We presented an integrative analysis of expression,
prognosis value, methylation levels, genomic alterations,
immune cell infiltration, and potential functions and
molecular mechanisms of PHLDA2 in HCC. Our data
demonstrated the remarkable upregulation of PHLDA2
expression in HCC. The results of the clinical association
analysis indicated the high expression of PHLDA2 indicates
larger tumors and later stages in patients. Additionally, high
PHLDA2 expression is a factor for predicting adverse
prognosis. Consequently, PHLDA2 has the potential to serve
as a diagnostic or prognostic biomarker for HCC.

In a broader context, the regulation of gene expression
encompasses various mechanisms, such as epigenetic
modification, genetic mutations, and transcription factors.
Specifically, DNA methylation plays a role in regulating
gene expression by impeding the binding of transcription
factors to the DNA promoter region [31]. Hypermethylation
leads to gene silencing, while hypomethylation results in

gene activation [32,33]. Our investigation revealed a
decrease in the methylation level of PHLDA2 in HCC,
suggesting that the heightened expression of PHLDA2 may
be influenced by promoter methylation. Reversal of the
hypomethylation may reduce PHLDA2 expression. Next, we
proceeded to examine the relationship between PHLDA2
and genomic instability.

Genomic instability, caused by DNA repair gene
mutations, is the driving factor of tumor heterogeneity and
evolution and could promote cancer development [34,35].
Mutations in various tumor suppressor genes, including
TP53 and ATM, have been linked to tumor genomic
instability [36,37]. In our study, TP53, acting as a cancer
guard, is more susceptible to mutation in HCC patients
exhibiting elevated expression of PHLDA2. Furthermore,
MATH, LOH, and HRD are the makers of genomic
instability. So, we infer that the upregulation of PHLDA2
can increase genomic instability, activate oncogenes, or
deactivate tumor suppressor genes, thereby promoting
tumor development.

TME, as the “soil” of tumorigenesis, is typically
composed of immune cells, stromal cells, ECM, the blood
and lymphatic vascular networks, and other secreted
molecules [38]. The continuous interaction between various
components and tumor cells promotes tumor progression
[39]. For example, tumor-associated macrophages (TAMs)
can be divided into two subpopulations: anti-tumor M1
macrophages and tumor-promoting M2 macrophages,
which can be converted under specific environmental
stimuli [40]. M2 macrophages can promote the
proliferation, invasiveness, angiogenesis, stemness, and
metastasis of HCC in various ways [41,42]. In addition, as
immunosuppressive cells, Tregs can inhibit the activity of
tumor killer T cells and secrete immunosuppressive
molecules, such as TGF-β, to promote the immune escape
of tumor cells [43,44]. Therefore, we investigated the
involvement of PHLDA2 in the immune microenvironment.
Our research revealed that PHLDA2 exhibited the capacity
to augment the infiltration of diverse immune cells in HCC,
encompassing Tregs, macrophages, dendritic cells, T cells
CD4+, T cells CD8+, B cells, and NK cells. Thus, targeting
PHLDA2 could potentially impede the recruitment of
TAMs, reprogram the polarization of TAMs, and suppress
Tregs-induced immune tolerance to enhance anti-tumor
immunity, thereby reshaping the tumor immune
microenvironment.

Subsequently, GO and KEGG enrichment analysis was
conducted on PHLDA2-related genes, revealing significant
enrichment in EMT, ECM, cytokine, and chemokine
pathways. The outcomes of ssGSEA analysis further
confirmed the pivotal involvement of PHLDA2 in the EMT
process. PHLDA2 may change the composition of ECM and
promote cancer cells to acquire EMT characteristics. The
process of EMT is characterized by the acquisition of
mesenchymal features by epithelial cells, which is associated
with various aspects of tumor development, including
initiation, invasion, metabolism, and resistance to therapy
[45,46]. Similarly, the dysregulation of ECM, a significant
component of the TME, is a remarkable feature of cancer
[47]. By targeting PHLDA2, it is possible to reverse the
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EMT process and improve the dysregulation of the ECM.
Furthermore, enrichment analysis revealed that PHLDA2 is
primarily involved in the WNT signaling pathway, PI3K-
AKT signaling pathway, TNF signaling pathway, and TGF-β
signaling pathway. Based on previous research, it has been
demonstrated that PHLDA2 plays a role in regulating EMT
in colorectal cancer via the PI3K-AKT signaling pathway
[15]. Additionally, PHLDA2 has been shown to impact
EMT and metastasis in osteosarcoma through the SRC/
PI3K/AKT/mTOR and WNT/GSK3-β/β-catenin signaling
pathway [14,48,49]. Furthermore, Lu et al. found that the
knockdown of PHLDA2 promoted apoptosis and autophagy
in glioma through the AKT/mTOR pathway [13]. PHLDA2
may also promotes HCC metastasis and progression
through these pathways. In conclusion, it can be inferred
that PHLDA2 affects EMT and other phenotypes through
the PI3K-AKT and TGF-β signaling pathways.

CSCs possess the functional characteristics of self-
renewal and differentiation and an augmented capacity for
therapeutic resistance, immune evasion, invasion, and
metastasis [50]. The stemness of tumor cells can be
influenced by various factors, such as EMT, ECM, and
various immune cells [51–53]. Our research indicated a
potential association between PHLDA2 and the
maintenance of stemness in HCC. The clustering analysis
revealed distinct clusters exhibiting diverse levels of
stemness. Notably, PHLDA2 expression consistently
exhibited the highest levels within clusters characterized by
the highest stemness. Furthermore, PHLDA2 positively
correlated with various molecules, such as CD24, CD47,
EPCAM, and ICAM1. These molecules play important roles
in the maintenance of cancer stemness [54–56]. The
targeting of PHLDA2 may lead to a reduction in the
expression levels of these molecules, thereby attenuating
stemness. In summary, PHLDA2 exhibits a significant
association with tumor stemness.

The cancer-stem-cell model provides an explanation for
various clinical phenomena observed in cancer, such as tumor
recurrence after successful chemotherapy and radiotherapy,
tumor dormancy, and treatment resistance [52]. Systemic
therapy, including chemotherapy and immunotherapy, is
recommended for advanced HCC patients [57]. The first-
line treatment options for these patients include
atezolizumab + bevacizumab, sorafenib, and lenvatinib [58].
However, it should be noted that while sorafenib is the
initial drug employed to enhance the prognosis of HCC
patients, not all individuals will derive benefits from it due
to the drug resistance. Numerous prior studies have
investigated the underlying mechanisms of sorafenib
resistance, such as TME, EMT, and stemness enhancement
in HCC [26,59]. Occasionally, sorafenib-resistant HCC cells
exhibit a notable EMT phenotype and possess stemness
characteristics [26,60]. Several studies have indicated that
the effectiveness of sorafenib treatment can be enhanced by
inhibiting EMT and weakening stemness in HCC [61,62]. A
study conducted by Chang et al. has demonstrated that
modulating the TME by targeting tumor infiltrating Ly6G+

myeloid cells is a potential strategy to enhance sorafenib
efficacy [63]. Zhou et al. revealed tumor-associated

neutrophils could recruit macrophages and Tregs into TME
to promote sorafenib resistance [64]. Consequently, it is
crucial to identify novel targets to overcome sorafenib
resistance. In our research, PHLDA2 was associated with
EMT and stemness and was involved in the modulation of
TME. Therefore, we suspected that PHLDA2 may
contribute to sorafenib resistance in HCC. As expcetion, our
findings confirmed that PHLDA2 was elevated in both non-
responders to immunotherapy and sorafenib-resistant
patients. This can provide new ideas for the treatment of
liver cancer.

To verify the aforementioned analytical outcomes, we
conducted relevant experiments. We first confirmed the
high expression of PHLDA2 in HCC cells through in vitro
experiments. Based on the findings of the enrichment
analysis, our experimental results have substantiated that the
downregulation of PHLDA2 leads to a reduction in AKT
phosphorylation levels. PHLDA2 may exert regulatory
control over the AKT signaling pathway, thereby facilitating
the advancement of hepatocellular carcinoma (HCC).
Moreover, our observations demonstrate an upregulation of
PHLDA2 expression upon treatment with TGF-β, thereby
indicating its involvement in the TGF-β signaling pathway.
Additionally, we subjected Hep3B cells to varying
concentrations of sorafenib and cisplatin for further
investigation. Our findings indicate that PHLDA2 showed
its responsiveness to sorafenib during the acute phase of
treatment. Additionally, the expression of PHLDA2 was
elevated in sorafenib-resistant Hep3B cells. Furthermore, we
observed that knocking of PHLDA2 weakened the resistance
of HCC cells to sorafenib by the MTT assay, indicating the
involvement of PHLDA2 in sorafenib resistance.

In summary, our study revealed the role of PHLDA2 in
HCC. However, this study also has certain limitations.
Firstly, the data used for analysis needs to be more
comprehensive. More clinical data should be included, and
the prognostic value of PHLDA2 should be verified in more
cohorts and populations. Secondly, more experiments are
needed to explore the specific pathways and mechanisms in
which PHLDA2 is involved. As for the role of PHLDA2 on
immune regulation, more basic research is required in the
future.

In conclusion, PHLDA2 is highly expressed in HCC, and
high expression levels of PHLDA2 increase immune cell
infiltration, enhance stemness, and induce drug resistance.
Consequently, targeting PHLDA2 emerges as a potential
therapeutic approach for managing HCC.
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