@Article{096504018X15426763753594, AUTHOR = {Fang Chen, Dongqiang Yang, Yuhua Ru, Shan Cao, Aishe Gao}, TITLE = {MicroRNA-101 Targets CXCL12-Mediated Akt and Snail Signaling Pathways to Inhibit Cellular Proliferation and Invasion in Papillary Thyroid Carcinoma}, JOURNAL = {Oncology Research}, VOLUME = {27}, YEAR = {2019}, NUMBER = {6}, PAGES = {691--701}, URL = {http://www.techscience.com/or/v27n6/48586}, ISSN = {1555-3906}, ABSTRACT = {Escalating evidence suggests that microRNA-101 (miR-101) is implicated in the development and progression of various cancers, including papillary thyroid carcinoma (PTC). However, the biological function and molecular mechanisms of miR-101 in PTC are still unclear. In this study, we demonstrated that miR-101 expression was significantly decreased in PTC tissues and cell lines. Clinically, a low level of miR-101 was positively associated with advanced histological stages and lymph node and distant metastases. The expression of CXCL12 was negatively correlated with miR-101 level in PTC. CXCL12 was validated as a direct target of miR-101 in PTC cells. Functional experiments proved that miR-101 markedly reduced the proliferation, apoptosis escape, migration, and invasion of PTC cells. Moreover, CXCL12 restoration rescued the suppressive effects of miR-101 on PTC cells by activating Akt- and EMT-associated signaling pathways. Overall, miR-101 exerts oncostatic effects on PTC by downregulating CXCL12 and repressing its downstream Akt and Snail signaling pathways, suggesting that miR-101/CXCL12/Akt or Snail axis may serve as a potential therapeutic target for PTC.}, DOI = {10.3727/096504018X15426763753594} }