@Article{phyton.2021.014740, AUTHOR = {Liling Kang, Yuejun He, Lipeng Zang, Jianpeng Si, Ying Yang, Kaiping Shen, Tingting Xia, Qiyu Tan, Bangli Wu, Yun Guo, Wei Wang, Qin Liang}, TITLE = {Mycorrhizal Networks Interacting with Litter Improves Nutrients and Growth for One Plant through the Vary of N/P Ratio under Karst Soil}, JOURNAL = {Phyton-International Journal of Experimental Botany}, VOLUME = {90}, YEAR = {2021}, NUMBER = {3}, PAGES = {701--717}, URL = {http://www.techscience.com/phyton/v90n3/41925}, ISSN = {1851-5657}, ABSTRACT = {Arbuscular mycorrhizae (AM) fungi affect nutrient uptake for host plants, while it is unclear how AM fungi interacting with soil litter affect plant growth and nutrient utilization through mycorrhizal networks in karst soil of deficient nutrients beyond the rhizosphere. An experiment was conducted in a microcosm composed of a planting compartment for Cinnamomum camphora seedlings with or without Glomus mosseae fungus (M+ vs. M ) and an adjacent litter compartment containing or not containing additional litter material of Arthraxon hispidus (L+ vs. L ), where the compartments are connected either by nylon mesh of 20 μm or 0.45 μm which either allow available mycorrhizal networks within the litter compartment or prevent mycelium entering into the litter compartment (N+ vs. N ). Plant biomass and nutrients were measured. The results showed that the addition of litter changed the symbiotic process in mycorrhizal colonization, spore, and hyphal density, which when in association with the host plant then affected the biomass, and accumulations of N (nitrogen) and P (phosphorus) in the individual plant as well as root, stem, and leaf respectively. AM fungi increased N and P accumulations and N/P ratio in individual plants and plant tissues. A decrease of the N/P ratio of the individual plant was observed when AM fungus interacted significantly with litter through mycorrhizal networks in the litter compartment. The results indicate that the C. camphora seedlings benefited from litter in nutrient utilization of N and P through the vary of N/P ratio when accessing mycorrhizal networks. These findings suggest that mycorrhizal networks interacting with litter improve growth and nutrients of N and P for plants through the vary of N/P ratio in order to alleviate nutrient limitation under karst soil.}, DOI = {10.32604/phyton.2021.014740} }