Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,968)
  • Open Access

    ARTICLE

    Practical Privacy-Preserving ROI Encryption System for Surveillance Videos Supporting Selective Decryption

    Chan Hyeong Cho, Hyun Min Song*, Taek-Young Youn*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 1911-1931, 2024, DOI:10.32604/cmes.2024.053430 - 31 October 2024

    Abstract With the advancement of video recording devices and network infrastructure, we use surveillance cameras to protect our valuable assets. This paper proposes a novel system for encrypting personal information within recorded surveillance videos to enhance efficiency and security. The proposed method leverages Dlib’s CNN-based facial recognition technology to identify Regions of Interest (ROIs) within the video, linking these ROIs to generate unique IDs. These IDs are then combined with a master key to create entity-specific keys, which are used to encrypt the ROIs within the video. This system supports selective decryption, effectively protecting personal information More >

  • Open Access

    ARTICLE

    Effect of Process Parameters on the Agglomeration Behavior and Tensile Response of Graphene Reinforced Magnesium Matrix Composites Based on Molecular Dynamics Model

    Chentong Zhao1, Jiming Zhou1,2,*, Xujiang Chao1,3, Su Wang1, Lehua Qi1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2453-2469, 2024, DOI:10.32604/cmes.2024.052723 - 31 October 2024

    Abstract The mechanical properties of graphene reinforced composites are often hampered by challenges related to the dispersion and aggregation of graphene within the matrix. This paper explores the mechanism of cooling rate, process temperature, and process pressure’s influence on the agglomeration behavior of graphene and the tensile response of composites from a computer simulation technology, namely molecular dynamics. Our findings reveal that the cooling rate exerts minimal influence on the tensile response of composites. Conversely, processing temperature significantly affects the degree of graphene aggregation, with higher temperatures leading to the formation of larger-sized graphene clusters. In More >

  • Open Access

    ARTICLE

    Data-Driven Structural Topology Optimization Method Using Conditional Wasserstein Generative Adversarial Networks with Gradient Penalty

    Qingrong Zeng, Xiaochen Liu, Xuefeng Zhu*, Xiangkui Zhang, Ping Hu

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2065-2085, 2024, DOI:10.32604/cmes.2024.052620 - 31 October 2024

    Abstract Traditional topology optimization methods often suffer from the “dimension curse” problem, wherein the computation time increases exponentially with the degrees of freedom in the background grid. Overcoming this challenge, we introduce a real-time topology optimization approach leveraging Conditional Generative Adversarial Networks with Gradient Penalty (CGAN-GP). This innovative method allows for nearly instantaneous prediction of optimized structures. Given a specific boundary condition, the network can produce a unique optimized structure in a one-to-one manner. The process begins by establishing a dataset using simulation data generated through the Solid Isotropic Material with Penalization (SIMP) method. Subsequently, we More >

  • Open Access

    ARTICLE

    Tree-Based Solution Frameworks for Predicting Tunnel Boring Machine Performance Using Rock Mass and Material Properties

    Danial Jahed Armaghani1,*, Zida Liu2, Hadi Khabbaz1, Hadi Fattahi3, Diyuan Li2, Mohammad Afrazi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2421-2451, 2024, DOI:10.32604/cmes.2024.052210 - 31 October 2024

    Abstract Tunnel Boring Machines (TBMs) are vital for tunnel and underground construction due to their high safety and efficiency. Accurately predicting TBM operational parameters based on the surrounding environment is crucial for planning schedules and managing costs. This study investigates the effectiveness of tree-based machine learning models, including Random Forest, Extremely Randomized Trees, Adaptive Boosting Machine, Gradient Boosting Machine, Extreme Gradient Boosting Machine (XGBoost), Light Gradient Boosting Machine, and CatBoost, in predicting the Penetration Rate (PR) of TBMs by considering rock mass and material characteristics. These techniques are able to provide a good relationship between input(s)… More >

  • Open Access

    REVIEW

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

    Md Naeem Hossain1, Md Mustafizur Rahman1,2,*, Devarajan Ramasamy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 951-996, 2024, DOI:10.32604/cmes.2024.056022 - 27 September 2024

    Abstract Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically. Hence, there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime caused by unanticipated vehicle breakdowns. Due to vehicles’ increasingly complex and autonomous nature, there is a growing urgency to investigate novel diagnosis methodologies for improving safety, reliability, and maintainability. While Artificial Intelligence (AI) has provided a great opportunity in this area, a systematic review of the feasibility and application of AI for Vehicle Fault Diagnosis (VFD)… More > Graphic Abstract

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

  • Open Access

    ARTICLE

    A New Isogeometric Finite Element Method for Analyzing Structures

    Pan Su1, Jiaxing Chen2, Ronggang Yang2, Jiawei Xiang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1883-1905, 2024, DOI:10.32604/cmes.2024.055942 - 27 September 2024

    Abstract High-performance finite element research has always been a major focus of finite element method studies. This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method. Firstly, the physical field is approximated by uniform B-spline interpolation, while geometry is represented by non-uniform rational B-spline interpolation. By introducing a transformation matrix, elements of types C0 and C1 are constructed in the isogeometric finite element method. Subsequently, the corresponding calculation formats for one-dimensional bars, beams, and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and… More >

  • Open Access

    ARTICLE

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

    Haris Alam Zuberi1, Madan Lal1, Shivangi Verma1, Nurul Amira Zainal2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1137-1163, 2024, DOI:10.32604/cmes.2024.055493 - 27 September 2024

    Abstract Motivated by the widespread applications of nanofluids, a nanofluid model is proposed which focuses on uniform magnetohydrodynamic (MHD) boundary layer flow over a non-linear stretching sheet, incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature (CST) and Prescribed Surface Temperature (PST). The study employs a two-phase model for the nanofluid, coupled with thermophoresis and Brownian motion, to analyze the effects of key fluid parameters such as thermophoresis, Brownian motion, slip velocity, Schmidt number, Eckert number, magnetic parameter, and non-linear stretching parameter on… More > Graphic Abstract

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

  • Open Access

    ARTICLE

    Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids

    Tong Zu, Fengyong Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1395-1417, 2024, DOI:10.32604/cmes.2024.055442 - 27 September 2024

    Abstract False data injection attack (FDIA) can affect the state estimation of the power grid by tampering with the measured value of the power grid data, and then destroying the stable operation of the smart grid. Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams. Data-driven features, however, cannot effectively capture the differences between noisy data and attack samples. As a result, slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks. To address this problem, this paper designs a… More >

  • Open Access

    ARTICLE

    Numerical Simulation and Entropy Production Analysis of Centrifugal Pump with Various Viscosity

    Zhenjiang Zhao1, Lei Jiang1, Ling Bai2,*, Bo Pan3, Ling Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1111-1136, 2024, DOI:10.32604/cmes.2024.055399 - 27 September 2024

    Abstract The fluid’s viscosity significantly affects the performance of a centrifugal pump. The entropy production method and leakage are employed to analyze the performance changes under various viscosities by numerical simulation and validated by experiments. The results showed that increasing viscosity reduces both the pump head and efficiency. In addition, the optimal operating point shifts to the left. Leakage is influenced by vortex distribution in the front chamber and boundary layer thickness in wear-ring clearance, leading to an initial increase and subsequent decrease in leakage with increasing viscosity. The total entropy production inside the pump rises More >

  • Open Access

    ARTICLE

    AI-Powered Image Security: Utilizing Autoencoders for Advanced Medical Image Encryption

    Fehaid Alqahtani*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1709-1724, 2024, DOI:10.32604/cmes.2024.054976 - 27 September 2024

    Abstract With the rapid advancement in artificial intelligence (AI) and its application in the Internet of Things (IoT), intelligent technologies are being introduced in the medical field, giving rise to smart healthcare systems. The medical imaging data contains sensitive information, which can easily be stolen or tampered with, necessitating secure encryption schemes designed specifically to protect these images. This paper introduces an artificial intelligence-driven novel encryption scheme tailored for the secure transmission and storage of high-resolution medical images. The proposed scheme utilizes an artificial intelligence-based autoencoder to compress high-resolution medical images and to facilitate fast encryption… More >

Displaying 91-100 on page 10 of 3968. Per Page