Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,316)
  • Open Access

    ARTICLE

    Application of Meshfree Method to Elastic-Plastic Fracture Mechanics Parameter Analysis

    S. Hagihara1, M. Tsunori2, T. Ikeda3, N. Miyazaki3

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.2, pp. 63-72, 2007, DOI:10.3970/cmes.2007.017.063

    Abstract The element-free Galerkin (EFG) method is applied to the calculation of elastic-plastic fracture mechanics parameters such as the J-integral and T*-integral. The fields of displacement, strain and stress for a crack problem are obtained using the elastic-plastic EFG method. Then the elastic-plastic fracture mechanics parameters J-integral and T*-integral are calculated from path and domain integrals. In the finite element analysis, paths for the path integral and domains for the domain integral are selected depending on finite element mesh division. On the other hand, they can be arbitrarily selected in the EFG method, and we can… More >

  • Open Access

    ARTICLE

    General Corotational Rate Tensor and Replacement of Material-time Derivative to Corotational Derivative of Yield Function

    K. Hashiguchi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.1, pp. 55-62, 2007, DOI:10.3970/cmes.2007.017.055

    Abstract Constitutive equation describing the mechanical properties of material has to be formulated in an identical form independent of coordinate systems by which it is described even if there exist any mutual configuration and/or mutual rotation between the material and coordinate systems. This mechanical requirement is attained by describing rate variables as corotational rate tensors with objectivity in constitutive equations in rate form. Besides, in order to use the material-time derivative of yield condition as a consistency condition it has to be replaced to the corotational derivative. In this note a general corotational rate for tensors More >

  • Open Access

    ARTICLE

    Cumulative Nonlinear Effects in Acoustic Wave Propagation

    Ivan Christov1, C.I. Christov2, P.M. Jordan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.1, pp. 47-54, 2007, DOI:10.3970/cmes.2007.017.047

    Abstract Two widely-used weakly-nonlinear models of acoustic wave propagation --- the inviscid Kuznetsov equation (IKE) and the Lighthill--Westervelt equation (LWE) --- are investigated numerically using a Godunov-type finite-difference scheme. A reformulation of the models as conservation laws is proposed, making it possible to use the numerical tools developed for the Euler equations to study the IKE and LWE, even after the time of shock-formation. It is shown that while the IKE is, without qualification, in very good agreement with the Euler equations, even near the time of shock formation, the same cannot generally be said for More >

  • Open Access

    ARTICLE

    Dynamic Analysis of Piezoelectric Structures by the Dual Reciprocity Boundary Element Method

    G. Dziatkiewicz1 and P. Fedelinski1

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.1, pp. 35-46, 2007, DOI:10.3970/cmes.2007.017.035

    Abstract The aim of the present work is to show the formulation and application of the dual reciprocity boundary element method (BEM) to free vibrations of two-dimensional piezoelectric structures. The piezoelectric materials are modelled as homogenous, linear -- elastic, transversal isotropic and dielectric. Displacements and electric potentials are treated as generalized displacements and tractions and electric charge flux densities are treated as generalized tractions. The static fundamental solutions, which are required in the proposed approach, are derived using the Stroh formalism. The domain inertial integral is transformed to the equivalent boundary integral using the dual reciprocity More >

  • Open Access

    ARTICLE

    An Explicit Multi-Level Time-Step Algorithm to Model the Propagation of Interacting Acoustic-Elastic Waves Using Finite Element/Finite Difference Coupled Procedures

    D. Soares Jr.1,2, W.J. Mansur1, D.L. Lima3

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.1, pp. 19-34, 2007, DOI:10.3970/cmes.2007.017.019

    Abstract The present paper discussion is concerned with the development of robust and efficient algorithms to model propagation of interacting acoustic and elastic waves. The paper considers acoustic-elastic, acoustic-acoustic and elastic-elastic partitioned analyses of coupled systems; however, the focus here is the acoustic-elastic coupling considering finite elements and the acoustic-acoustic coupling considering finite elements and finite differences (other coupling procedures can be implemented analogously). One important feature of the algorithms presented is that they allow considering different time-steps for different sub-domains; so it is possible to substantially improve efficiency, accuracy and stability of the central difference More >

  • Open Access

    ARTICLE

    Highly Accurate Computation of Spatial-Dependent Heat Conductivity and Heat Capacity in Inverse Thermal Problem

    Chein-Shan Liu1, Li-Wei Liu2, Hong-Ki Hong2

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.1, pp. 1-18, 2007, DOI:10.3970/cmes.2007.017.001

    Abstract In this paper we are concerned with the parameters identification of the inverse heat conduction problems governed by linear parabolic partial differential equations (PDEs). It is the first time that one can construct a closed-form estimation method for the inverse thermal problems of estimating the spatial-dependent thermophysical parameters. The key points hinge on an establishment of a one-step group preserving scheme (GPS) for the semi-discretization of PDEs, as well as a closed-form solution of the resulting algebraic equations. The new method, namely the Lie-group estimation method, has four advantages: it does not require any prior More >

  • Open Access

    ARTICLE

    Wavelet Based 2-D Spectral Finite Element Formulation for Wave Propagation Analysis in Isotropic Plates

    Mira Mitra1, S. Gopalakrishnan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.1, pp. 49-68, 2006, DOI:10.3970/cmes.2006.015.049

    Abstract In this paper, a 2-D Wavelet based Spectral Finite Element (WSFE) is developed and is used to study wave propagation in an isotropic plate. Here, first, wavelet approximation is done in both temporal and one spatial (lateral) dimension to reduce the governing partial differential wave equations to a set of Ordinary Differential Equations (ODEs). Daubechies compactly supported orthogonal scaling functions are used as basis which allows finite domain analysis and easy imposition of initial/boundary conditions. However, the assignment of initial and boundary conditions in time and space respectively, are done following two different methods. Next,… More >

  • Open Access

    ARTICLE

    Accurate Force Evaluation for Industrial Magnetostatics Applications with Fast Bem-Fem Approaches

    A. Frangi1, L. Ghezzi, P. Faure-Ragani2

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.1, pp. 41-48, 2006, DOI:10.3970/cmes.2006.015.041

    Abstract Three dimensional magneto-mechanical problems at low frequency are addressed by means of a coupled fast Boundary Element - Finite Element approach with total scalar potential and focusing especially on the issue of global force calculation on movable ferromagnetic parts. The differentiation of co-energy in this framework and the use of Maxwell tensor are critically discussed and the intrinsic links are put in evidence. Three examples of academic and industrial applications are employed for validation. More >

  • Open Access

    ARTICLE

    Analysis and Optimization of Dynamically Loaded Reinforced Plates by the Coupled Boundary and Finite Element Method

    P. Fedelinski1, R. Gorski1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.1, pp. 31-40, 2006, DOI:10.3970/cmes.2006.015.031

    Abstract The aim of the present work is to analyze and optimize plates in plane strain or stress with stiffeners subjected to dynamic loads. The reinforced structures are analyzed using the coupled boundary and finite element method. The plates are modeled using the dual reciprocity boundary element method (DR-BEM) and the stiffeners using the finite element method (FEM). The matrix equations of motion are formulated for the plate and stiffeners. The equations are coupled using conditions of compatibility of displacements and equilibrium of tractions along the interfaces between the plate and stiffeners. The final set of… More >

  • Open Access

    ARTICLE

    Boundary Element Method for Magneto Electro Elastic Laminates

    A. Milazzo1, I. Benedetti2, C. Orlando3

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.1, pp. 17-30, 2006, DOI:10.3970/cmes.2006.015.017

    Abstract A boundary integral formulation and its numerical implementation are presented for the analysis of magneto electro elastic media. The problem is formulated by using a suitable set of generalized variables, namely the generalized displacements, which are comprised of mechanical displacements and electric and magnetic scalar potentials, and generalized tractions, that is mechanical tractions, electric displacement and magnetic induction. The governing boundary integral equation is obtained by generalizing the reciprocity theorem to the magneto electro elasticity. The fundamental solutions are calculated through a modified Lekhnitskii's approach, reformulated in terms of generalized magneto-electro-elastic displacements. To assess the More >

Displaying 3861-3870 on page 387 of 4316. Per Page