Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,001)
  • Open Access

    ARTICLE

    Heat and Mass Transfer Along of a Vertical Wall by Natural convection in Porous Media

    Aouachria Z1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 137-148, 2009, DOI:10.3970/fdmp.2009.005.137

    Abstract This work treats heat and mass transfer by natural convection along a vertical wall in porous media imbibed by fluid, using an integral method. The problem governing parameters are the buoyancy ratio,N, and the Lewis number, Le The results for the local Nusselt and Sherwood numbers are presented for a large range of these parameters. The concentration and thermal boundary layer thickness are also determined. We observe that our results are in good agreement with those obtained by Bejan and Khair (1985). More >

  • Open Access

    ARTICLE

    Production of Carbon Nanotubes-Nickel Composites on Different Graphite Substrates

    Munther Issa K,ah1, Jean-Luc Meunier2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 123-136, 2009, DOI:10.3970/fdmp.2009.005.123

    Abstract Multi walled carbon nanotubes (MWCNTs) were synthesized on different graphite types covered with thin layer of nickel catalyst by catalytic chemical vapour deposition using acetylene as hydrocarbon source. The produced carbon nanotubes were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The shape, quantity and diameter of the MWCNTs are shown to be affected by the type of the graphite substrate, the growth temperature and the hydrocarbon source flow rate. The diameters of the produced MWCNTs were ranged between 43 and 80 nm for pyrolytic (PYROID) and polycrystalline More >

  • Open Access

    ARTICLE

    Prediction of Erosion Wear in Multi-Size Particulate Flow through a Rotating Channel

    K.V. Pagalthivarthi1, P.K. Gupta2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 93-122, 2009, DOI:10.3970/fdmp.2009.005.093

    Abstract The objective of the present work is to predict erosive wear in multisize dense slurry flow in a rotating channel. The methodology comprises numerical prediction of two-phase flow which is accomplished using the Galerkin finite element method. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. The effect of various operating parameters such as rotation rate, solids concentration, flow rate, particle size distribution and so forth has been studied. Results indicate that wear rate in general increases along the pressure-side of the channel with rotation rate, overall More >

  • Open Access

    ARTICLE

    Liquid Droplet Impact onto Flat and Rigid Surfaces: Initial Ejection Velocity of the Lamella

    Davood Kalantari1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 81-92, 2009, DOI:10.3970/fdmp.2009.005.081

    Abstract In this paper a theoretical approach is elaborated for modelling the impact and ensuing spreading behaviour of a liquid droplet after its collision with a flat and rigid surface. The major outcomes of such a study can be summarized as follows: 1) The propagating-shock-wave velocity associated with the droplet is not a constant value but depends on the impact velocity and the physical and geometrical properties of the droplet. 2) The initial radial ejection velocity of the lamella is proportional to the shock-wave velocity (ua) and the impact velocity (0) according to the expression (a-u0)1/2. More >

  • Open Access

    ARTICLE

    Development of an Apparatus for Determining Surface Tension in Drops: Post-Flight Analysis of STS-108

    Lassig, J.1, Montes, G., Quiroga, J.

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 61-80, 2009, DOI:10.3970/fdmp.2009.005.061

    Abstract This paper presents a description of the design and ensuing development of an automated liquid droplet generator and related utilization aboard the space shuttle, a) as a fluid positioning system for materials processing (attached droplet method), and b) as a means to measure surface oscillation of droplets under microgravity for determining their surface tension. More >

  • Open Access

    ARTICLE

    An Implicit Unsteady Finite Volume Formulation for Natural Convection in a Square Cavity

    Edoardo Bucchignani1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 37-60, 2009, DOI:10.3970/fdmp.2009.005.037

    Abstract This article describes an implicit method for the solution of time dependent Navier-Stokes equations written in terms of vorticity and velocity. The field equations are discretized using a finite volume technique over quadrilateral meshes.
    The numerical code has been applied to the classical window cavity test, employing a fine stretched non-uniform grid, in order to provide an accurate steady solution for a high value of the Rayleigh number (108). It has also been performed a simulation for a value of Rayleigh larger than the critical value, in order to show the capabilities of the proposed More >

  • Open Access

    ARTICLE

    Numerical Study of Convective Heat Transfer in a Horizontal Channel

    M. El Alami1, E. A. Semma2,3, M. Najam1, R. Boutarfa2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 23-36, 2009, DOI:10.3970/fdmp.2009.005.023

    Abstract This study is devoted to the investigation of natural convection in a two dimensional horizontal channel with rectangular heated blocks at the bottom. The aspect ratio of the channel is A = L'/H' = 5. The blocks are heated with a constant temperature while the upper plane of the channel is cold. The governing equations are solved using a finite volumes method and the SIMPLEC algorithm is used for the treatment of the pressure-velocity coupling. Special emphasis is given to detail the effect of the Rayleigh number and blocks height on the heat transfer and the More >

  • Open Access

    ARTICLE

    Electromagnetic Levitation Part III: Thermophysical Property Measurements in Microgravity

    Sayavur I. Bakhtiyarov1, Dennis A. Siginer2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 1-22, 2009, DOI:10.3970/fdmp.2009.005.001

    Abstract Strong inhomogeneous magnetic fields are necessary to generate a finite levitation force in ground based electromagnetic levitation techniques. External forces such as magnetic and gravitational forces influence the oscillation spectrum and counteract the surface movement resulting in a frequency shift, and making the use of electromagnetic levitation techniques in microgravity an attractive alternative to measure thermophysical properties of liquid metals. Under microgravity conditions the magnetic field strength around a liquid droplet is significantly lower than that required to position the same specimen against earth gravity. Hence, a low magnetic field strength results in a low More >

  • Open Access

    ARTICLE

    Towards a Numerical Benchmark for 3D Low Mach Number Mixed Flows in a Rectangular Channel Heated from Below

    G. Accary1, S. Meradji2, D. Morvan2, D. Fougère2

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.4, pp. 263-270, 2008, DOI:10.3970/fdmp.2008.004.263

    Abstract In the literature, only few references have dealt with mixed-convection flows in the low Mach number approximation. For this reason, in the present study we propose to extend the standard 3D benchmark for mixed convection in a rectangular channel heated from below (Medale and Nicolas, 2005) to the case of large temperature variations (for which the Boussinesq approximation is no longer valid). The Navier-Stokes equations, obtained under the assumption of a low Mach number flow, are solved using a finite volume method. The results, corresponding to the steady-state case of the benchmark, lead to the More >

  • Open Access

    ARTICLE

    Mixed Convection in Horizontal Internally Finned Semicircular Ducts

    A. M. Ben-Arous1, A. A. Busedra1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.4, pp. 255-262, 2008, DOI:10.3970/fdmp.2008.004.255

    Abstract The problem of combined free and forced convection in horizontal semicircular ducts (flat wall at the bottom) with radial internal fins is investigated from a numerical point of view. The wall of the duct is assumed to have a uniform heat input along the axial direction with a uniform peripheral wall temperature (H1). The analysis focuses on the case of hydrodynamically and thermally fully-developed laminar flow. The governing equations for the velocity and temperature are solved by using a control-volume-based finite-difference approach. The fluid flow and heat transfer characteristics are found to be dependent on More >

Displaying 901-910 on page 91 of 1001. Per Page