Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (987)
  • Open Access

    ARTICLE

    Modeling of Dendritic Growth in Alloy Solidification with Melt Convection

    C.P. Hong1, M.F. Zhu2, S.Y. Lee1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.4, pp. 247-260, 2006, DOI:10.3970/fdmp.2006.002.247

    Abstract In typical solidification processes the flow of molten metal is usually regarded as an unavoidable phenomenon potentially affecting the morphology of dendritic growth. Fundamental understanding of such flow is thus important for predicting and controlling solidification microstructures. This paper presents numerical simulations on the evolution of dendritic microstructures with melt convection. A two-dimensional modified cellular automaton (MCA) coupled with a transport model is developed to simulate solidification of binary and ternary alloys in the presence of fluid flow. This model takes into account the effects of the constitutional undercooling and curvature undercooling on the equilibrium More >

  • Open Access

    ARTICLE

    Molten-Alloy Driven Self-Assembly for Nano and Micro Scale System Integration

    Ehsan Saeedi1, Shaghayegh Abbasi1, Karl F. B ¨ohringer1, Babak A. Parviz1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.4, pp. 221-246, 2006, DOI:10.3970/fdmp.2006.002.221

    Abstract Self-assembly is emerging as one of the main methods for construction of heterogeneous systems consisting of multiple component types in nano- and micro-scales. The engineered self-assembly used for system integration involves preparation of parts that can recognize and bind to each other or a template, and perfection of procedures that allow for high yield self-assembly of these parts into a system. Capillary forces resultant from molten alloys are attractive candidates for driving such self-assembly processes as they can simultaneously provide electrical and mechanical connections. The basic self-assembly process is reviewed here. Selection of the appropriate More >

  • Open Access

    ARTICLE

    Biological Tissue Growth in a Double-Scaffold Configuration

    Marcello Lappa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 141-152, 2006, DOI:10.3970/fdmp.2006.002.141

    Abstract Numerical simulations and computer-graphics animation can be used as useful tools to discern the physicochemical environmental factors affecting the surface kinetics of growing biological tissues as well as their relative importance in determining growth. A mathematical formalism for such kinetics is proposed through parametric investigation and validated through focused comparison with experimental results. The study relies on the application of a CFD moving boundary (Volume of Fluid) method specially conceived for the simulation of these problems. In the second part of the analysis the case of two samples hydrodynamically interacting in a rotating bioreactor is More >

  • Open Access

    ARTICLE

    Three-Dimensional Modeling of the Effects of Misalignment on the Growth of Ge1-xSix by The Traveling Solvent Method

    M. Sohail1, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 127-140, 2006, DOI:10.3970/fdmp.2006.002.127

    Abstract A numerical simulation study is carried out for the crystal growth of Ge1-xSixby the Traveling Heater Method (THM). The effects of a geometrical misalignment on the crystal growth are investigated. The full Navier-Stokes equations together with the energy, mass transport and continuity equations are solved numerically using the finite element technique. The application of a misalignment is shown to have a considerable effect on the buoyancy induced flow. An optimal misalignment is determined, that weakens the convective flow, provides a uniform concentration along the growth interface and gives symmetrical characteristics to the three-dimensional buoyancy induced More >

  • Open Access

    ARTICLE

    Electromagnetic Stirring in Crystal Growth Processes

    Nancy Ma1, John S. Walker2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 119-126, 2006, DOI:10.3970/fdmp.2006.002.119

    Abstract For semiconductor crystal growth from a melt, stirring due to the interaction of a steady electric current and a steady magnetic field can lead to a more uniform distribution of the additives in the crystal. This paper treats the electromagnetic stirring in a cylinder with a weak uniform axial magnetic field and with an electric current between an electrode in the center of the top of the cylinder and an electrode at the vertical wall of the cylinder. The magnitude and distribution of the stirring are studied as functions of the aspect ratio of the More >

  • Open Access

    ARTICLE

    Pendulum Thermal Vibrational Convection in a Liquid Layer with Internal Heat Generation

    V.G. Kozlov1, N.V. Selin2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 107-118, 2006, DOI:10.3970/fdmp.2006.002.107

    Abstract Thermal vibrational convection in a sector of a thin spherical liquid layer subjected to pendulum vibrations (spherical pendulum) is investigated theoretically and experimentally. Temperature non-uniformity inside the liquid is caused by uniformly distributed internal heat sources (one side of the layer is isothermal, the other one is adiabatic). Experiments are carried out under conditions of stable temperature stratification in the gravity field. Heat transfer and convective structure are investigated in a wide interval of governing dimensionless parameters. A critical increase of heat transfer is revealed as the vibrations intensity is increased, caused by average convection. More >

  • Open Access

    ARTICLE

    Influence of Layer Height on Thermal Buoyancy Convection in A System with Two Superposed Fluids Confined in A Parallelepipedic Cavity

    Sunil Punjabi1, K. Muralidhar2, P. K. Panigrahi2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 95-106, 2006, DOI:10.3970/fdmp.2006.002.095

    Abstract Convection in a differentially heated two-layer system consisting of air and water was studied experimentally, using laser-interferometry. The cavity used for flow visualization was square in cross-section and rectangular in-plan having dimensions of 447 × 32 × 32 mm3. Experiments performed over different layer thicknesses of water filled in a square cross-section cavity, the rest being air, are reported in the present work. The following temperature differences for each layer height were imposed across the hot and the cold walls of the superposed fluid layers: (i) ΔT=10K and (ii)ΔT =18 K. The present study was aimed… More >

  • Open Access

    ARTICLE

    Scalings for Droplet Sizes in Shear-Driven Breakup: Non-Microfluidic Ways to Monodisperse Emulsions

    V. Cristini1, Y. Renardy2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 77-94, 2006, DOI:10.3970/fdmp.2006.002.077

    Abstract We review studies of a drop of viscous liquid, suspended in another liquid, and undergoing breakup in an impulsively started shear flow. Stokes flow conditions as well as the effects of inertia are reported. They reveal a universal scaling for the fragments, which allows one to use sheared emulsions to produce monodispersity as an alternative to microfluidic devices. More >

  • Open Access

    ARTICLE

    The Solution Crystallisation Diagnostics Facility, a European Facility for Microgravity Research on Structures from Solutions on Board the ISS

    V. Pletser1, R. Bosch2, L. Potthast2, R. Kassel3

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 65-76, 2006, DOI:10.3970/fdmp.2006.002.065

    Abstract Orbital weightless conditions have been shown to yield better and larger crystals. The Solution Crystallization Diagnostics Facility (SCDF) is a third generation instrument developed by ESA and dedicated to the observation and study with advanced diagnostics nucleation and crystallisation processes of molecules from solutions on board the International Space Station. The SCDF is intended to be used for studies of proteins and large biomolecules, and more generally of any kind of molecules growing from solutions, using the powerful set of diagnostics means available in the SCDF platform. Several protein crystallisation reactors have been developed to More >

  • Open Access

    ARTICLE

    Influence of Thermocapillary Convection on Solid-liquid Interface

    K. Matsunaga1, H. Kawamura1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 59-64, 2006, DOI:10.3970/fdmp.2006.002.059

    Abstract Existing studies on solidification phenomena mainly focused on the solidification processes per se. In real systems, however, one cannot neglect the effects of molten material convective flow, such as natural and thermocapillary convection (they strongly affect the resulting quality of the solidified materials). The present study aims to experimentally investigate on the effect of the thermocapillary flow upon the directional solidification in a liquid layer with a free upper surface. If no free surface exists, the solid--liquid interface (SLI) is vertical and straight, while, with the free surface, the SLI is inclined against the wall-normal More >

Displaying 951-960 on page 96 of 987. Per Page