Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,706)
  • Open Access

    ARTICLE

    PAV-A-kNN: A Novel Approachable kNN Query Method in Road Network Environments

    Kailai Zhou*, Weikang Xia, Jiatai Wang

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3217-3240, 2025, DOI:10.32604/cmc.2025.065334 - 03 July 2025

    Abstract Ride-hailing (e.g., DiDi and Uber) has become an important tool for modern urban mobility. To improve the utilization efficiency of ride-hailing vehicles, a novel query method, called Approachable k-nearest neighbor (A-kNN), has recently been proposed in the industry. Unlike traditional kNN queries, A-kNN considers not only the road network distance but also the availability status of vehicles. In this context, even vehicles with passengers can still be considered potential candidates for dispatch if their destinations are near the requester’s location. The V-Tree-based query method, due to its structural characteristics, is capable of efficiently finding k-nearest moving objects within… More >

  • Open Access

    ARTICLE

    QHF-CS: Quantum-Enhanced Heart Failure Prediction Using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data

    Prasanna Kottapalle1,*, Tan Kuan Tak2, Pravin Ramdas Kshirsagar3, Gopichand Ginnela4, Vijaya Krishna Akula5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3857-3892, 2025, DOI:10.32604/cmc.2025.065287 - 03 July 2025

    Abstract Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide, exacerbated by the COVID-19 pandemic. Age, cholesterol, and blood pressure datasets are becoming inadequate because they cannot capture the complexity of emerging health indicators. These high-dimensional and heterogeneous datasets make traditional machine learning methods difficult, and Skewness and other new biomarkers and psychosocial factors bias the model’s heart health prediction across diverse patient profiles. Modern medical datasets’ complexity and high dimensionality challenge traditional prediction models like Support Vector Machines and Decision Trees. Quantum approaches include QSVM, QkNN, QDT, and others.… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Algorithm for Robust Object Detection in Flooded and Rainy Environments

    Pengfei Wang1,2,3, Jiwu Sun2, Lu Lu1,4, Hongchen Li1, Hongzhe Liu2, Cheng Xu2, Yongqiang Liu1,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2883-2903, 2025, DOI:10.32604/cmc.2025.065267 - 03 July 2025

    Abstract Flooding and heavy rainfall under extreme weather conditions pose significant challenges to target detection algorithms. Traditional methods often struggle to address issues such as image blurring, dynamic noise interference, and variations in target scale. Conventional neural network (CNN)-based target detection approaches face notable limitations in such adverse weather scenarios, primarily due to the fixed geometric sampling structures that hinder adaptability to complex backgrounds and dynamically changing object appearances. To address these challenges, this paper proposes an optimized YOLOv9 model incorporating an improved deformable convolutional network (DCN) enhanced with a multi-scale dilated attention (MSDA) mechanism. Specifically,… More >

  • Open Access

    ARTICLE

    SPD-YOLO: A Method for Detecting Maize Disease Pests Using Improved YOLOv7

    Zhunruo Feng1, Ruomeng Shi2, Yuhan Jiang3, Yiming Han1, Zeyang Ma1, Yuheng Ren4,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3559-3575, 2025, DOI:10.32604/cmc.2025.065152 - 03 July 2025

    Abstract In this study, we propose Space-to-Depth and You Only Look Once Version 7 (SPD-YOLOv7), an accurate and efficient method for detecting pests in maize crops, addressing challenges such as small pest sizes, blurred images, low resolution, and significant species variation across different growth stages. To improve the model’s ability to generalize and its robustness, we incorporate target background analysis, data augmentation, and processing techniques like Gaussian noise and brightness adjustment. In target detection, increasing the depth of the neural network can lead to the loss of small target information. To overcome this, we introduce the… More >

  • Open Access

    REVIEW

    Research Trends and Networks in Self-Explaining Autonomous Systems: A Bibliometric Study

    Oscar Peña-Cáceres1,2,*, Elvis Garay-Silupu3, Darwin Aguilar-Chuquizuta4, Henry Silva-Marchan4

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2151-2188, 2025, DOI:10.32604/cmc.2025.065149 - 03 July 2025

    Abstract Self-Explaining Autonomous Systems (SEAS) have emerged as a strategic frontier within Artificial Intelligence (AI), responding to growing demands for transparency and interpretability in autonomous decision-making. This study presents a comprehensive bibliometric analysis of SEAS research published between 2020 and February 2025, drawing upon 1380 documents indexed in Scopus. The analysis applies co-citation mapping, keyword co-occurrence, and author collaboration networks using VOSviewer, MASHA, and Python to examine scientific production, intellectual structure, and global collaboration patterns. The results indicate a sustained annual growth rate of 41.38%, with an h-index of 57 and an average of 21.97 citations… More >

  • Open Access

    ARTICLE

    AI-Integrated Feature Selection of Intrusion Detection for Both SDN and Traditional Network Architectures Using an Improved Crayfish Optimization Algorithm

    Hui Xu, Wei Huang*, Longtan Bai

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3053-3073, 2025, DOI:10.32604/cmc.2025.064930 - 03 July 2025

    Abstract With the birth of Software-Defined Networking (SDN), integration of both SDN and traditional architectures becomes the development trend of computer networks. Network intrusion detection faces challenges in dealing with complex attacks in SDN environments, thus to address the network security issues from the viewpoint of Artificial Intelligence (AI), this paper introduces the Crayfish Optimization Algorithm (COA) to the field of intrusion detection for both SDN and traditional network architectures, and based on the characteristics of the original COA, an Improved Crayfish Optimization Algorithm (ICOA) is proposed by integrating strategies of elite reverse learning, Levy flight,… More >

  • Open Access

    ARTICLE

    Upholding Academic Integrity amidst Advanced Language Models: Evaluating BiLSTM Networks with GloVe Embeddings for Detecting AI-Generated Scientific Abstracts

    Lilia-Eliana Popescu-Apreutesei, Mihai-Sorin Iosupescu, Sabina Cristiana Necula, Vasile-Daniel Păvăloaia*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2605-2644, 2025, DOI:10.32604/cmc.2025.064747 - 03 July 2025

    Abstract The increasing fluency of advanced language models, such as GPT-3.5, GPT-4, and the recently introduced DeepSeek, challenges the ability to distinguish between human-authored and AI-generated academic writing. This situation is raising significant concerns regarding the integrity and authenticity of academic work. In light of the above, the current research evaluates the effectiveness of Bidirectional Long Short-Term Memory (BiLSTM) networks enhanced with pre-trained GloVe (Global Vectors for Word Representation) embeddings to detect AI-generated scientific abstracts drawn from the AI-GA (Artificial Intelligence Generated Abstracts) dataset. Two core BiLSTM variants were assessed: a single-layer approach and a dual-layer… More >

  • Open Access

    ARTICLE

    Image-Based Air Quality Estimation by Few-Shot Learning

    Duc Cuong Pham1, Tien Duc Ngo2, Hoai Nam Vu1,3,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2959-2974, 2025, DOI:10.32604/cmc.2025.064672 - 03 July 2025

    Abstract Air quality estimation assesses the pollution level in the air, supports public health warnings, and is a valuable tool in environmental management. Although air sensors have proven helpful in this task, sensors are often expensive and difficult to install, while cameras are becoming more popular and accessible, from which images can be collected as data for deep learning models to solve the above task. This leads to another problem: several labeled images are needed to achieve high accuracy when deep-learning models predict air quality. In this research, we have three main contributions: (1) Collect and… More >

  • Open Access

    REVIEW

    A Survey on Artificial Intelligence and Blockchain Clustering for Enhanced Security in 6G Wireless Networks

    A. F. M. Shahen Shah1,*, Muhammet Ali Karabulut2, Abu Kamruzzaman3, Dalal Alharthi4, Phillip G. Bradford5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 1981-2013, 2025, DOI:10.32604/cmc.2025.064028 - 03 July 2025

    Abstract The advent of 6G wireless technology, which offers previously unattainable data rates, very low latency, and compatibility with a wide range of communication devices, promises to transform the networking environment completely. The 6G wireless proposals aim to expand wireless communication’s capabilities well beyond current levels. This technology is expected to revolutionize how we communicate, connect, and use the power of the digital world. However, maintaining secure and efficient data management becomes crucial as 6G networks grow in size and complexity. This study investigates blockchain clustering and artificial intelligence (AI) approaches to ensure a reliable and… More >

  • Open Access

    ARTICLE

    Zero-Shot Based Spatial AI Algorithm for Up-to-Date 3D Vision Map Generations in Highly Complex Indoor Environments

    Sehun Lee, Taehoon Kim, Junho Ahn*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3623-3648, 2025, DOI:10.32604/cmc.2025.063985 - 03 July 2025

    Abstract This paper proposes a zero-shot based spatial recognition AI algorithm by fusing and developing multi-dimensional vision identification technology adapted to the situation in large indoor and underground spaces. With the expansion of large shopping malls and underground urban spaces (UUS), there is an increasing need for new technologies that can quickly identify complex indoor structures and changes such as relocation, remodeling, and construction for the safety and management of citizens through the provision of the up-to-date indoor 3D site maps. The proposed algorithm utilizes data collected by an unmanned robot to create a 3D site… More >

Displaying 11-20 on page 2 of 4706. Per Page