Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,076)
  • Open Access

    ARTICLE

    Exploring the Trait Plasticity of ipa1-2D and qPL6 under Different Nitrogen Treatments and Heading Periods

    Wenshu Zhuang1,#, Guangyang Jin1,#, Yiting Zou1, Zhong Bian1, Dong Xie1, Shuwei Zhang1, Hadi Yeilaghi1, Liangliang Yu3, Muiyun Wong4, Xiaolei Fan1,2, Dongsheng Zhao1,2, Qiaoquan Liu1,2, Lin Zhang1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2737-2754, 2024, DOI:10.32604/phyton.2024.054649 - 30 November 2024

    Abstract Panicle size is one of the important factors in shaping yield potential in rice, but it shows plasticity in different environments, which leads to yield fluctuation. Variations in panicle size among varieties are largely determined by quantitative trait loci (QTLs). QTL analysis could elaborate on the environmental impact on trait plasticity using nearly isogenic lines (NILs) of different QTLs. Two QTLs, ipa1-2D and qPL6 are identified to have pleiotropic contributions to panicle size and plant architecture, but their responses to different growth conditions are still unclear. In this study, we developed NILs harboring a single locus… More >

  • Open Access

    PROCEEDINGS

    Deep Learning Aided Optimization of 1D Phononic Crystals

    Shih-Chun Liao1, I-Ling Chang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012885

    Abstract In this work, a new deep learning (DL) approach for the bandgap optimization of 1-D phononic crystal will be reported. The unit cell of the phononic crystal is composed of 4 layers with 3 materials, i.e., concrete, soil and rubber. A deep learning model is trained to replace the computationally demanding traditional solvers for the bandgap calculation of 1-D phononic crystals. Four variables, including material properties and layer thicknesses, will be taken into account. The predicted bandgap by the trained model is compared with that calculated by transfer matrix in order to check the accuracy More >

  • Open Access

    PROCEEDINGS

    Design and Optimization of Microgroove Nreve Guidance Conduits

    Hexin Yue1, Cian Vyas1,2,*, Paulo Bartolo1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011598

    Abstract Peripheral nerve injury can result in significant motor or sensory impairment. Traditional treatments have certain drawbacks and often result in suboptimal clinical results. To overcome these limitations, tissue engineering and bioprinting technologies are promising approaches for manufacturing nerve guidance conduits (NGCs). NGCs are tubular biostructures that bridge the nerve injury site, provide an appropriate microenvironment, and promote peripheral nerve regeneration by guiding axonal growth. The architecture of NGCs needs to mimic the morphology of natural peripheral nerves by designing their topology to regulate nerve cell behaviours. Topographic guidance cues are an effective element in improving… More >

  • Open Access

    ARTICLE

    Instruments Assessing Problematic Use of the Internet and Their Associations with Psychological Distress among Ghanaian University Students

    Yu-Ting Huang1,#, Daniel Kwasi Ahorsu2,#, Emma Sethina Adjaottor3,*, Frimpong-Manso Addo3, Mark D. Griffiths4, Amir H. Pakpour5, Chung-Ying Lin1,6,7,8,*

    International Journal of Mental Health Promotion, Vol.26, No.11, pp. 875-885, 2024, DOI:10.32604/ijmhp.2024.057049 - 28 November 2024

    Abstract Background: The present study evaluated the psychometric properties of Problematic Internet Use (PIU) instruments and their correlation with psychological distress and time spent on Internet activities among university students in Ghana. Methods: In the present cross-sectional survey design study, 520 participants (35.96% female) were recruited with a mean age of 19.55 years (SD = 1.94) from several university departments (i.e., Behavioral Sciences, Materials Engineering, Nursing and Midwifery, and Biochemistry and Biotechnology) of Kwame Nkrumah University of Science and Technology (KNUST) between 19 July and 04 August, 2023. Participants completed a survey that included the following… More >

  • Open Access

    PROCEEDINGS

    Mechanism Analysis of Thermal Pain and Mechanical Matching of Stretchable Bio-Integrated Devices Integrated on Biological Tissues

    Yuhang Li1,*, Jin Nan1, Yang Wang1, Yafei Yin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.013412

    Abstract As a new type of electronic device, stretchable bio-integrated devices are generally composed of inorganic functional components, stretchable interconnected structures, soft biocompatible substrates and encapsulations, and have wide adaptability to a variety of complex surfaces of soft biological tissues. The small size of functional components, the thin substrate thickness, and poor thermal conductivity can easily lead to thermal burns caused by local temperature concentration in biological tissues. The unique microstructure characteristics and biological thermal characteristics of biological tissues make the heat transfer behavior of integrated devices in biological tissues significantly different from the traditional Fourier… More >

  • Open Access

    PROCEEDINGS

    Compression Behavior of FRP-Confined Seawater Sea-Sand Coral Aggregates Concrete (SSCAC)

    Mianheng Lai1, R. Q. Lu1, Fengming Ren1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012824

    Abstract Coral aggregates have become a promising alternative to natural coarse aggregates in the offshore construction projects. In this paper, seawater sea-sand coral aggregates concrete (SSCAC) with 4 basic materials: cement, seawater, sea-sands and coral aggregates was produced. By adding various minerals fly ash (FA) and limestone powder (LSP) to partially replace cement, the performance of SSCAC can be improved while reducing the carbon dioxide emission. Due to the higher chloride ion content of SSCAC, fiber-reinforced polymer (FRP) was used to confined SSCAC instead of the traditional steel to solve the corrosion problem. This paper conducted More >

  • Open Access

    PROCEEDINGS

    Effects of Structural Deflection on Nonlinear Flutter of Preheated Functionally Graded Panels in Supersonic Airstream

    Wei Xia1,*, Ximao Zhong1, Jianwei Song1, Shuling Hu1, Shengping Shen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012814

    Abstract Panel flutter is an aeroelastic phenomenon characterized with thermo-mechanical coupling and geometric nonlinearity. In high speed air vehicles, panel flutter introduces violent vibration of the skin structures and leads to structural failure with fatigue cracks. When functionally graded materials (FGM) are adopted as the thermal isolator on high speed vehicles, the thermo-mechanical performance of skin panels is increased while the panel flutter is affected by the asymmetry. It is of great interest to study the nonlinear phenomenon of FGM panel flutter.
    In this work, an aeroelastic model of preheated FGM panels are established. The Mindlin plate… More >

  • Open Access

    PROCEEDINGS

    Dynamic Response of Sandwich Panel with Re-Entrant Honeycomb Core Reinforced by Catenary Under Air Blast

    Zhen Zou1,2, Fengxiang Xu1,2,*, Yifan Zhu1,2, Xiaoqiang Niu1,2, Xiao Geng1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011093

    Abstract Honeycomb cored sandwich structures have been attracted extensive attentions attributed to outstanding explosion and impact protection capability. Herein, in order to improve the anti-blast performance of re-entrant honeycombs (RH) cored sandwich panel, the conventional RH is reinforced by introducing catenary in the form of connecting both ends of horizontal cell walls and catenary. The results show that the deformation mode of the reinforced RHs (RRH) becomes more stable and regular compared to RHs, and the energy absorption of classic RHs can be enhanced because the reinforced structures and the improved auxetic deformation are employed simultaneously.… More >

  • Open Access

    PERSPECTIVE

    The Future of Plasticizers: Biobased and Oligomeric

    Bob A. Howell*

    Journal of Renewable Materials, Vol.12, No.11, pp. 1857-1861, 2024, DOI:10.32604/jrm.2024.056283 - 22 November 2024

    Abstract The deficiencies of popular phthalate plasticizers (ready migration from a polymer matrix into which they have been incorporated, flammability, environmental pollution, human health risks) have stimulated efforts to develop new effective, nonmigrating, low-cost, nontoxic replacements. In the main, these have been based on readily-available, nontoxic biobased precursors. Some, including those prepared from plant oils, have been generated from biomaterials themselves. However, the more numerous and generally more effective have been generated from discrete compounds produced from various biomaterials. Several structural features of effective plasticizers have been recognized. Polar functionality is required to assure compatibility with More >

  • Open Access

    ARTICLE

    Malfunction Diagnosis of the GTCC System under All Operating Conditions Based on Exergy Analysis

    Xinwei Wang1,2,*, Ming Li1, Hankun Bing1, Dongxing Zhang1, Yuanshu Zhang1

    Energy Engineering, Vol.121, No.12, pp. 3875-3898, 2024, DOI:10.32604/ee.2024.056237 - 22 November 2024

    Abstract After long-term operation, the performance of components in the GTCC system deteriorates and requires timely maintenance. Due to the inability to directly measure the degree of component malfunction, it is necessary to use advanced exergy analysis diagnosis methods to characterize the components’ health condition (degree of malfunction) through operation data of the GTCC system. The dissipative temperature is used to describe the degree of malfunction of different components in the GTCC system, and an advanced exergy analysis diagnostic method is used to establish a database of overall operating condition component malfunctions in the GTCC system.… More >

Displaying 21-30 on page 3 of 4076. Per Page