Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access

    ARTICLE

    Selective Adsorption of Ag(I) from Electronic Waste Leachate Using Modified Silk Sericin

    Sijing Zhang1*, Fengjiao Ao1, Yongping Wang2, Junxue Zhao3, Yongliang Ji1, Shuangli Chen1

    Journal of Renewable Materials, Vol.6, No.1, pp. 102-116, 2018, DOI:10.7569/JRM.2017.634154

    Abstract A novel biosorbent was synthesized by grafting bisthiourea (BTU) on a silk sericin (SS) matrix. This biosorbent was denoted as BTU-SS and characterized by Fourier transform infrared spectroscopy (FTIR), zeta potential measurements, elemental analysis, and X-ray photoelectron spectroscopy (XPS). As revealed by the adsorption experiments, both BTU-SS and SS showed low affinity towards coexisting base metallic ions in Ag(I)-Cu(II)-Zn(II)-Ni(II)-Pb(II) electronic waste leachate mixtures, while their adsorption capacities towards Ag(I) reached 30.5 and 10.4 mg·g–1 at a pH of 5.0, respectively. BTU-SS showed higher selectivity towards Ag(I) than SS, as revealed by the Ag(I) partition coefficients More >

  • Open Access

    ARTICLE

    Analysis of the Properties and Anti-Seepage Mechanism of PBFC Slurry in Landfill

    Guozhong Dai1,*, Jia Zhu2, Guicai Shi3, Yanmin Sheng4, Shujin Li5

    Structural Durability & Health Monitoring, Vol.11, No.2, pp. 169-190, 2017, DOI:10.3970/sdhm.2017.011.169

    Abstract As the landfill leachate has strong pollution on the underground water, surface water and soil. This paper develops the formula of impervious slurry with low permeability, good durability, strong adsorption and retardant based on the bentonite which is modified by polyvinyl alcohol. Through the simulation experiment, the optimum formula of polyvinyl alcohol is 0.2%. Its osmotic coefficient for 28 days is 0.53×10-8~1.86×10-8 cm/s and compressive strength is 0.5~1.5 MPa as well. This paper study on the retardant rule of the consolidation of slurry against the pollution in the leachate by self-made percolation instrument. The experiment More >

  • Open Access

    ARTICLE

    Graphene-Based 3D Xerogel as Adsorbent for Removal of Heavy Metal Ions from Industrial Wastewater

    Purnendu, Soumitra Satapathi*

    Journal of Renewable Materials, Vol.5, No.2, pp. 96-102, 2017, DOI:10.7569/JRM.2016.634134

    Abstract Graphene-based 3D porous xerogel was designed through molecular self-assembly of graphene oxide on chitosan matrix and its application in removal of different heavy metal ions from wastewater was investigated. The synthesized xerogel was characterized through FTIR, SEM, XRD and BET surface area analysis. Heavy metal ions, including Pb(II), Cd(II), and Hg(II), were removed from wastewater using this graphene-chitosan (GO-Cs) xerogel and the removal efficiency was monitored through inductively coupled plasma mass spectrometry (ICP-MS). The effect of GO-Cs composition and pH on adsorption efficiency as well as the kinetics of adsorption was studied in detail. The More >

  • Open Access

    ARTICLE

    Ab initio Molecular Dynamics of H2 Dissociative Adsorption on Graphene Surfaces

    Kentaro Doi1,2, Ikumi Onishi1, Satoyuki Kawano1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.2, pp. 113-136, 2011, DOI:10.3970/cmes.2011.077.113

    Abstract Hydrogen technologies are currently one of the most actively researched topics. A lot of researches have tied to enhance their energy conversion efficiencies. In the present study, numerical analyses have been carried out focusing on hydrogen-storage carbon materials which are expected to realize high gravimetric and volumetric capacities. In particular, dissociative adsorption processes of H2 molecules above graphene surfaces have been investigated by ab initio molecular dynamics. The present results indicate that a steric graphene surface plays an important role in enhancing the charge transfer which induces dissociation of H2 and adsorption of H atoms on the More >

  • Open Access

    ARTICLE

    Classification and Optimization Model of Mesoporous Carbons Pore Structure and Adsorption Properties Based on Support Vector Machine

    Zhen Yang1, Xingsheng Gu2, Xiaoyi Liang1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.3&4, pp. 161-182, 2011, DOI:10.3970/cmes.2011.074.161

    Abstract Mesoporous carbons are synthesized by organic-organic self-assembly of triblock copolymer F127 and a new type of carbon precursor as resorcinol-furfural oligomers. Some factors will impact the mesoporous carbons pore structure and properties were studied. The main factors, such as the ratio of triblock copolymer F127 and oligomers, degree of polymerizstry of resorcinol-furfural oligomers, the ratio of resorcinol-furfural oligomers - F/R, and their mutual relations were identified. Aimed at balancing the complex characteristic of mesoporous structure and adsorption properties, a classification and optimization model based on support vector machine is developed. The optimal operation conditions of More >

  • Open Access

    ARTICLE

    A Modified Multiscale Model for Microcantilever Sensor

    Yan Zhang1, Shengping Shen1

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 17-22, 2008, DOI:10.3970/cmc.2008.008.017

    Abstract In this paper, an existed model for adsorption-induced surface stress is modified with physical clarity, based on the equilibrium of force. In the proposed multiscale model, a four-atom system is used, instead of the existed three-atom system which did not consider the force equilibrium. By analyzing the force state of an atom, the thickness of the first layer atoms can be determined. Thus, the proposed model does not need to determine the layer-thickness by experiments or artificially. The results obtained from the proposed model agree very well with the experimental data. This paper is helpful More >

Displaying 61-70 on page 7 of 66. Per Page