Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (115)
  • Open Access

    ARTICLE

    Optimized Binary Neural Networks for Road Anomaly Detection: A TinyML Approach on Edge Devices

    Amna Khatoon1, Weixing Wang1,*, Asad Ullah2, Limin Li3,*, Mengfei Wang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 527-546, 2024, DOI:10.32604/cmc.2024.051147 - 18 July 2024

    Abstract Integrating Tiny Machine Learning (TinyML) with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level. Constrained devices efficiently implement a Binary Neural Network (BNN) for road feature extraction, utilizing quantization and compression through a pruning strategy. The modifications resulted in a 28-fold decrease in memory usage and a 25% enhancement in inference speed while only experiencing a 2.5% decrease in accuracy. It showcases its superiority over conventional detection algorithms in different road image scenarios. Although constrained by computer resources and training datasets, our results indicate opportunities for More >

  • Open Access

    ARTICLE

    LSTM Based Neural Network Model for Anomaly Event Detection in Care-Independent Smart Homes

    Brij B. Gupta1,2,3,*, Akshat Gaurav4, Razaz Waheeb Attar5, Varsha Arya6,7, Ahmed Alhomoud8, Kwok Tai Chui9

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2689-2706, 2024, DOI:10.32604/cmes.2024.050825 - 08 July 2024

    Abstract This study introduces a long-short-term memory (LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes, focusing on the critical application of elderly fall detection. It balances the dataset using the Synthetic Minority Over-sampling Technique (SMOTE), effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks. The proposed LSTM model is trained on the enriched dataset, capturing the temporal dependencies essential for anomaly recognition. The model demonstrated a significant improvement in anomaly detection, with an accuracy of 84%. The results, detailed in the comprehensive classification and confusion More >

  • Open Access

    ARTICLE

    A Novel Graph Structure Learning Based Semi-Supervised Framework for Anomaly Identification in Fluctuating IoT Environment

    Weijian Song1,, Xi Li1,, Peng Chen1,*, Juan Chen1, Jianhua Ren2, Yunni Xia3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3001-3016, 2024, DOI:10.32604/cmes.2024.048563 - 08 July 2024

    Abstract With the rapid development of Internet of Things (IoT) technology, IoT systems have been widely applied in healthcare, transportation, home, and other fields. However, with the continuous expansion of the scale and increasing complexity of IoT systems, the stability and security issues of IoT systems have become increasingly prominent. Thus, it is crucial to detect anomalies in the collected IoT time series from various sensors. Recently, deep learning models have been leveraged for IoT anomaly detection. However, owing to the challenges associated with data labeling, most IoT anomaly detection methods resort to unsupervised learning techniques.… More >

  • Open Access

    ARTICLE

    A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion

    Xiu Liu, Liang Gu*, Xin Gong, Long An, Xurui Gao, Juying Wu

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4045-4061, 2024, DOI:10.32604/cmc.2024.048442 - 20 June 2024

    Abstract With the popularisation of intelligent power, power devices have different shapes, numbers and specifications. This means that the power data has distributional variability, the model learning process cannot achieve sufficient extraction of data features, which seriously affects the accuracy and performance of anomaly detection. Therefore, this paper proposes a deep learning-based anomaly detection model for power data, which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction. Aiming at the distribution variability of power data, this paper developed a sliding window-based data adjustment method for… More >

  • Open Access

    ARTICLE

    FusionNN: A Semantic Feature Fusion Model Based on Multimodal for Web Anomaly Detection

    Li Wang1,2,3,*, Mingshan Xia1,2,*, Hao Hu1, Jianfang Li1,2, Fengyao Hou1,2, Gang Chen1,2,3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2991-3006, 2024, DOI:10.32604/cmc.2024.048637 - 15 May 2024

    Abstract With the rapid development of the mobile communication and the Internet, the previous web anomaly detection and identification models were built relying on security experts’ empirical knowledge and attack features. Although this approach can achieve higher detection performance, it requires huge human labor and resources to maintain the feature library. In contrast, semantic feature engineering can dynamically discover new semantic features and optimize feature selection by automatically analyzing the semantic information contained in the data itself, thus reducing dependence on prior knowledge. However, current semantic features still have the problem of semantic expression singularity, as… More >

  • Open Access

    ARTICLE

    Anomaly Detection Algorithm of Power System Based on Graph Structure and Anomaly Attention

    Yifan Gao*, Jieming Zhang, Zhanchen Chen, Xianchao Chen

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 493-507, 2024, DOI:10.32604/cmc.2024.048615 - 25 April 2024

    Abstract In this paper, we propose a novel anomaly detection method for data centers based on a combination of graph structure and abnormal attention mechanism. The method leverages the sensor monitoring data from target power substations to construct multidimensional time series. These time series are subsequently transformed into graph structures, and corresponding adjacency matrices are obtained. By incorporating the adjacency matrices and additional weights associated with the graph structure, an aggregation matrix is derived. The aggregation matrix is then fed into a pre-trained graph convolutional neural network (GCN) to extract graph structure features. Moreover, both the More >

  • Open Access

    ARTICLE

    Mobile Crowdsourcing Task Allocation Based on Dynamic Self-Attention GANs

    Kai Wei1, Song Yu2, Qingxian Pan1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 607-622, 2024, DOI:10.32604/cmc.2024.048240 - 25 April 2024

    Abstract Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation. While traditional methods for task allocation can help reduce costs and improve efficiency, they may encounter challenges when dealing with abnormal data flow nodes, leading to decreased allocation accuracy and efficiency. To address these issues, this study proposes a novel two-part invalid detection task allocation framework. In the first step, an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data. Compared to the baseline method, the model achieves an approximately 4% increase in the F1 value More >

  • Open Access

    ARTICLE

    A Security Trade-Off Scheme of Anomaly Detection System in IoT to Defend against Data-Tampering Attacks

    Bing Liu1, Zhe Zhang1, Shengrong Hu2, Song Sun3,*, Dapeng Liu4, Zhenyu Qiu5

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4049-4069, 2024, DOI:10.32604/cmc.2024.048099 - 26 March 2024

    Abstract Internet of Things (IoT) is vulnerable to data-tampering (DT) attacks. Due to resource limitations, many anomaly detection systems (ADSs) for IoT have high false positive rates when detecting DT attacks. This leads to the misreporting of normal data, which will impact the normal operation of IoT. To mitigate the impact caused by the high false positive rate of ADS, this paper proposes an ADS management scheme for clustered IoT. First, we model the data transmission and anomaly detection in clustered IoT. Then, the operation strategy of the clustered IoT is formulated as the running probabilities… More >

  • Open Access

    ARTICLE

    Cross-Dimension Attentive Feature Fusion Network for Unsupervised Time-Series Anomaly Detection

    Rui Wang1, Yao Zhou3,*, Guangchun Luo1, Peng Chen2, Dezhong Peng3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3011-3027, 2024, DOI:10.32604/cmes.2023.047065 - 11 March 2024

    Abstract Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data. Due to the challenges associated with annotating anomaly events, time series reconstruction has become a prevalent approach for unsupervised anomaly detection. However, effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series. In this paper, we propose a cross-dimension attentive feature fusion network for time series anomaly detection, referred to as CAFFN. Specifically, a series and feature mixing block is introduced to learn representations More >

  • Open Access

    ARTICLE

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

    Lanyao Zhang1, Shichao Kan2, Yigang Cen3, Xiaoling Chen1, Linna Zhang1,*, Yansen Huang4,5

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1631-1648, 2024, DOI:10.32604/cmc.2024.046924 - 27 February 2024

    Abstract Unsupervised methods based on density representation have shown their abilities in anomaly detection, but detection performance still needs to be improved. Specifically, approaches using normalizing flows can accurately evaluate sample distributions, mapping normal features to the normal distribution and anomalous features outside it. Consequently, this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network (NF-BMR). It utilizes pre-trained Convolutional Neural Networks (CNN) and normalizing flows to construct discriminative source and target domain feature spaces. Additionally, to better learn feature information in both domain spaces, we propose the Bidirectional Mapping Residual Network (BMR), which maps sample… More > Graphic Abstract

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

Displaying 11-20 on page 2 of 115. Per Page