Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,019)
  • Open Access

    ARTICLE

    Large Deformation Applications with the Radial Natural Neighbours Interpolators

    L.M.J.S. Dinis1, R.M. Natal Jorge2, J. Belinha3

    CMES-Computer Modeling in Engineering & Sciences, Vol.44, No.1, pp. 1-34, 2009, DOI:10.3970/cmes.2009.044.001

    Abstract The Natural Neighbour Radial Point Interpolation Method (NNRPIM) is extended to the large deformation analysis of non-linear elastic structures. The nodal connectivity in the NNRPIM is enforced using the Natural Neighbour concept. After the Voronoï diagram construction of the unstructured nodal mesh, which discretize the problem domain, small cells are created, the "influence-cells". These cells are in fact influence-domains entirely nodal dependent. The Delaunay triangles are used to create a node-depending background mesh used in the numerical integration of the NNRPIM interpolation functions. The NNRPIM interpolation functions, used in the Galerkin weak form, are constructed… More >

  • Open Access

    ARTICLE

    A Highly Accurate Technique for Interpolations Using Very High-Order Polynomials, and Its Applications to Some Ill-Posed Linear Problems

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.3, pp. 253-276, 2009, DOI:10.3970/cmes.2009.043.253

    Abstract Since the works of Newton and Lagrange, interpolation had been a mature technique in the numerical mathematics. Among the many interpolation methods, global or piecewise, the polynomial interpolation p(x) = a0 + a1x + ... + anxn expanded by the monomials is the simplest one, which is easy to handle mathematically. For higher accuracy, one always attempts to use a higher-order polynomial as an interpolant. But, Runge gave a counterexample, demonstrating that the polynomial interpolation problem may be ill-posed. Very high-order polynomial interpolation is very hard to realize by numerical computations. In this paper we propose a… More >

  • Open Access

    ARTICLE

    Applications of the Fictitious Time Integration Method Using a New Time-Like Function

    Cheng-Yu Ku1,2, Weichung Yeih1,2, Chein-Shan Liu3, Chih-Chang Chi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.2, pp. 173-190, 2009, DOI:10.3970/cmes.2009.043.173

    Abstract In this paper, a new time-like function with the incorporation of the fictitious time integration method (FTIM) is proposed. The new time-like function is modified from the original time-like function in the FTIM by adding a control parameter m, which dramatically improves the performance of the FTIM for solving highly nonlinear boundary value problems (BVPs) and plays as an important controller to assure the convergence of the solution during the time integration process. The requirements and the characteristics of the new time-like function are presented by examining the FTIM through the perspective of the new More >

  • Open Access

    ARTICLE

    Stability Analysis for Fractional Differential Equations and Their Applications in the Models of HIV-1 Infection

    Chunhai Kou1, Ye Yan2, Jian Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.3, pp. 301-318, 2009, DOI:10.3970/cmes.2009.039.301

    Abstract In the paper, stability for fractional order differential equations is studied. Then the result obtained is applied to analyse the stability of equilibrium for the model of HIV. More >

  • Open Access

    ARTICLE

    On the Application of Wavelets to One Dimensional Flame Simulations with Non-Unit Lewis Numbers

    R. Prosser1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 411-424, 2009, DOI:10.3970/fdmp.2009.005.411

    Abstract A novel wavelet-based method for the simulation of reacting flows on adaptive meshes is presented. The method is based on a subtraction algorithm, wherein the wavelet coefficients are calculated from the low resolution up (as opposed to the standard top-down approach). The advantage of this new method is that it allows the calculation of wavelet coefficients on sparse grids, and thus lends itself more readily to adaptive computational meshes than does the traditional wavelet algorithm. The approach is used to simulate a one-dimensional laminar pre-mixed flame with different Lewis numbers. The computational grid is adapted More >

  • Open Access

    ARTICLE

    Application of a Diffusion Model to Predict Drying Kinetics Changes Under Variable Conditions: Experimental and Simulation Study

    L. Bennamoun1, A. Belhamri2, A. Ali Mohamed

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 177-192, 2009, DOI:10.3970/fdmp.2009.005.177

    Abstract This study focuses on the interplay between drying kinetics (encountered in typical industrial processes and particularly in the context of solar drying) and the possible variation of external (e.g., environmental) conditions. Theoretical models of these behaviours are introduced. Experimental results confirmed by simulation are also presented. Variation of the thermo physical properties of air is taken into account in terms of variation of viscosity, density and coefficient of diffusion. In particular, this coefficient is calculated from experimental data and expressed as a function of the wet bulb air temperature. When external conditions are modified and,… More >

  • Open Access

    ARTICLE

    Applications of the Phase-Coded Generalized Hough Transform to Feature Detection, Analysis, and Segmentation of Digital Microstructures

    Stephen R. Niezgoda1, Surya R. Kalidindi1,2

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 79-98, 2009, DOI:10.3970/cmc.2009.014.079

    Abstract The generalized Hough transform is a common technique for feature detection in image processing. In this paper, we develop a size invariant Hough framework for the detection of arbitrary shapes in three dimensional digital microstructure datasets. The Hough transform is efficiently implemented via kernel convolution with complex Hough filters, where shape is captured in the magnitude of the filter and scale in the complex phase. In this paper, we further generalize the concept of a Hough filter by encoding other parameters of interest (e.g. orientation of plate or fiber constituents) in the complex phase, broadening More >

  • Open Access

    ARTICLE

    Singular Superposition/Boundary Element Method for Reconstruction of Multi-dimensional Heat Flux Distributions with Application to Film Cooling Holes

    Silieti, M.1, Divo, E.2, Kassab, A.J.1

    CMC-Computers, Materials & Continua, Vol.12, No.2, pp. 121-144, 2009, DOI:10.3970/cmc.2009.012.121

    Abstract A hybrid singularity superposition/boundary element-based inverse problem method for the reconstruction of multi-dimensional heat flux distributions is developed. Cauchy conditions are imposed at exposed surfaces that are readily reached for measurements while convective boundary conditions are unknown at surfaces that are not amenable to measurements such as the walls of the cooling holes. The purpose of the inverse analysis is to determine the heat flux distribution along cooling hole surfaces. This is accomplished in an iterative process by distributing a set of singularities (sinks) inside the physical boundaries of the cooling hole (usually along cooling… More >

  • Open Access

    ARTICLE

    Brillouin Spectral Response Depending on Strain Non-Uniformity within Centimeter Spatial Resolution and its Application to Internal Damage Detection in Large-Scale Composite Structures

    Shu Minakuchi1, Tadahito Mizutani1, Haruka Tsukamoto2, Mayuko Nishio2, Yoji Okabe3, Nobuo Takeda1

    Structural Durability & Health Monitoring, Vol.4, No.4, pp. 199-220, 2008, DOI:10.3970/sdhm.2008.004.199

    Abstract The authors propose a technique to detect centimeter internal damages in large-scale composite structures, using an optical fiber network running throughout the structure. A Brillouin-based distributed strain sensing system with centimeter-order spatial resolution (pre-pump pulse Brillouin optical time domain analysis (PPP-BOTDA)) was utilized to detect residual non-uniform strain in the damaged area. First, Brillouin spectral response depending on the strain profile within the spatial resolution was revealed. The spectral response depending on strain non-uniformity was experimentally quantified with consideration of the general characteristics of the Brillouin gain spectrum. Then, the damage detection procedure was proposed, More >

  • Open Access

    ABSTRACT

    Application of System Dynamics in Analysis of Carrying Capacity of Water Resources in Yiwu City of China

    L. H. Feng1, J. H. Feng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.1, pp. 15-20, 2008, DOI:10.3970/icces.2008.005.015

    Abstract The primary scheme of unilaterally pursuing fast economic development at the expense of the environment and the secondary scheme focusing on environmental protection as the primary goal by slowing economic development are both undesirable for Yiwu. The third scheme balancing economic development with environmental protection is the most effective scheme. More >

Displaying 941-950 on page 95 of 1019. Per Page