Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    ARTICLE

    Robust Attack Detection Approach for IIoT Using Ensemble Classifier

    V. Priya1, I. Sumaiya Thaseen1, Thippa Reddy Gadekallu1, Mohamed K. Aboudaif2,*, Emad Abouel Nasr3

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2457-2470, 2021, DOI:10.32604/cmc.2021.013852 - 28 December 2020

    Abstract Generally, the risks associated with malicious threats are increasing for the Internet of Things (IoT) and its related applications due to dependency on the Internet and the minimal resource availability of IoT devices. Thus, anomaly-based intrusion detection models for IoT networks are vital. Distinct detection methodologies need to be developed for the Industrial Internet of Things (IIoT) network as threat detection is a significant expectation of stakeholders. Machine learning approaches are considered to be evolving techniques that learn with experience, and such approaches have resulted in superior performance in various applications, such as pattern recognition,… More >

  • Open Access

    ARTICLE

    Anomaly Classification Using Genetic Algorithm-Based Random Forest Model for Network Attack Detection

    Adel Assiri*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 767-778, 2021, DOI:10.32604/cmc.2020.013813 - 30 October 2020

    Abstract Anomaly classification based on network traffic features is an important task to monitor and detect network intrusion attacks. Network-based intrusion detection systems (NIDSs) using machine learning (ML) methods are effective tools for protecting network infrastructures and services from unpredictable and unseen attacks. Among several ML methods, random forest (RF) is a robust method that can be used in ML-based network intrusion detection solutions. However, the minimum number of instances for each split and the number of trees in the forest are two key parameters of RF that can affect classification accuracy. Therefore, optimal parameter selection… More >

  • Open Access

    ARTICLE

    A Novel DDoS Attack Detection Method Using Optimized Generalized Multiple Kernel Learning

    Jieren Cheng1, 2, Junqi Li2, *, Xiangyan Tang2, Victor S. Sheng3, Chen Zhang2, Mengyang Li2

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1423-1443, 2020, DOI:10.32604/cmc.2020.06176

    Abstract Distributed Denial of Service (DDoS) attack has become one of the most destructive network attacks which can pose a mortal threat to Internet security. Existing detection methods cannot effectively detect early attacks. In this paper, we propose a detection method of DDoS attacks based on generalized multiple kernel learning (GMKL) combining with the constructed parameter R. The super-fusion feature value (SFV) and comprehensive degree of feature (CDF) are defined to describe the characteristic of attack flow and normal flow. A method for calculating R based on SFV and CDF is proposed to select the combination More >

  • Open Access

    ARTICLE

    DDoS Attack Detection via Multi-Scale Convolutional Neural Network

    Jieren Cheng1, 2, Yifu Liu1, *, Xiangyan Tang1, Victor S. Sheng3, Mengyang Li1, Junqi Li1

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1317-1333, 2020, DOI:10.32604/cmc.2020.06177

    Abstract Distributed Denial-of-Service (DDoS) has caused great damage to the network in the big data environment. Existing methods are characterized by low computational efficiency, high false alarm rate and high false alarm rate. In this paper, we propose a DDoS attack detection method based on network flow grayscale matrix feature via multiscale convolutional neural network (CNN). According to the different characteristics of the attack flow and the normal flow in the IP protocol, the seven-tuple is defined to describe the network flow characteristics and converted into a grayscale feature by binary. Based on the network flow More >

Displaying 61-70 on page 7 of 64. Per Page