Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (200)
  • Open Access

    ARTICLE

    A Novel Approach to Design Distribution Preserving Framework for Big Data

    Mini Prince1,*, P. M. Joe Prathap2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2789-2803, 2023, DOI:10.32604/iasc.2023.029533 - 17 August 2022

    Abstract

    In several fields like financial dealing, industry, business, medicine, et cetera, Big Data (BD) has been utilized extensively, which is nothing but a collection of a huge amount of data. However, it is highly complicated along with time-consuming to process a massive amount of data. Thus, to design the Distribution Preserving Framework for BD, a novel methodology has been proposed utilizing Manhattan Distance (MD)-centered Partition Around Medoid (MD–PAM) along with Conjugate Gradient Artificial Neural Network (CG-ANN), which undergoes various steps to reduce the complications of BD. Firstly, the data are processed in the pre-processing phase by

    More >

  • Open Access

    ARTICLE

    Web Page Recommendation Using Distributional Recurrent Neural Network

    Chaithra1,*, G. M. Lingaraju2, S. Jagannatha3

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 803-817, 2023, DOI:10.32604/csse.2023.028770 - 16 August 2022

    Abstract In the data retrieval process of the Data recommendation system, the matching prediction and similarity identification take place a major role in the ontology. In that, there are several methods to improve the retrieving process with improved accuracy and to reduce the searching time. Since, in the data recommendation system, this type of data searching becomes complex to search for the best matching for given query data and fails in the accuracy of the query recommendation process. To improve the performance of data validation, this paper proposed a novel model of data similarity estimation and… More >

  • Open Access

    ARTICLE

    Big Data Analytics: Deep Content-Based Prediction with Sampling Perspective

    Waleed Albattah, Saleh Albahli*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 531-544, 2023, DOI:10.32604/csse.2023.021548 - 16 August 2022

    Abstract The world of information technology is more than ever being flooded with huge amounts of data, nearly 2.5 quintillion bytes every day. This large stream of data is called big data, and the amount is increasing each day. This research uses a technique called sampling, which selects a representative subset of the data points, manipulates and analyzes this subset to identify patterns and trends in the larger dataset being examined, and finally, creates models. Sampling uses a small proportion of the original data for analysis and model training, so that it is relatively faster while… More >

  • Open Access

    ARTICLE

    Algorithms for Pre-Compiling Programs by Parallel Compilers

    Fayez AlFayez*

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2165-2176, 2023, DOI:10.32604/csse.2023.026238 - 01 August 2022

    Abstract The paper addresses the challenge of transmitting a big number of files stored in a data center (DC), encrypting them by compilers, and sending them through a network at an acceptable time. Face to the big number of files, only one compiler may not be sufficient to encrypt data in an acceptable time. In this paper, we consider the problem of several compilers and the objective is to find an algorithm that can give an efficient schedule for the given files to be compiled by the compilers. The main objective of the work is to… More >

  • Open Access

    ARTICLE

    Design of Online Vitals Monitor by Integrating Big Data and IoT

    E. Afreen Banu1,*, V. Rajamani2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2469-2487, 2023, DOI:10.32604/csse.2023.021332 - 01 August 2022

    Abstract In this work, we design a multisensory IoT-based online vitals monitor (hereinafter referred to as the VITALS) to sense four bedside physiological parameters including pulse (heart) rate, body temperature, blood pressure, and peripheral oxygen saturation. Then, the proposed system constantly transfers these signals to the analytics system which aids in enhancing diagnostics at an earlier stage as well as monitoring after recovery. The core hardware of the VITALS includes commercial off-the-shelf sensing devices/medical equipment, a powerful microcontroller, a reliable wireless communication module, and a big data analytics system. It extracts human vital signs in a… More >

  • Open Access

    ARTICLE

    A Parallel Approach for Sentiment Analysis on Social Networks Using Spark

    M. Mohamed Iqbal1,*, K. Latha2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1831-1842, 2023, DOI:10.32604/iasc.2023.029036 - 19 July 2022

    Abstract The public is increasingly using social media platforms such as Twitter and Facebook to express their views on a variety of topics. As a result, social media has emerged as the most effective and largest open source for obtaining public opinion. Single node computational methods are inefficient for sentiment analysis on such large datasets. Supercomputers or parallel or distributed processing are two options for dealing with such large amounts of data. Most parallel programming frameworks, such as MPI (Message Processing Interface), are difficult to use and scale in environments where supercomputers are expensive. Using the… More >

  • Open Access

    ARTICLE

    Modeling of Optimal Deep Learning Based Flood Forecasting Model Using Twitter Data

    G. Indra1,*, N. Duraipandian2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1455-1470, 2023, DOI:10.32604/iasc.2023.027703 - 19 July 2022

    Abstract A flood is a significant damaging natural calamity that causes loss of life and property. Earlier work on the construction of flood prediction models intended to reduce risks, suggest policies, reduce mortality, and limit property damage caused by floods. The massive amount of data generated by social media platforms such as Twitter opens the door to flood analysis. Because of the real-time nature of Twitter data, some government agencies and authorities have used it to track natural catastrophe events in order to build a more rapid rescue strategy. However, due to the shorter duration of… More >

  • Open Access

    ARTICLE

    Big Data Analytics with Optimal Deep Learning Model for Medical Image Classification

    Tariq Mohammed Alqahtani*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1433-1449, 2023, DOI:10.32604/csse.2023.025594 - 15 June 2022

    Abstract In recent years, huge volumes of healthcare data are getting generated in various forms. The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker. Due to such massive generation of big data, the utilization of new methods based on Big Data Analytics (BDA), Machine Learning (ML), and Artificial Intelligence (AI) have become essential. In this aspect, the current research work develops a new Big Data Analytics with Cat Swarm Optimization based deep Learning (BDA-CSODL) technique for medical image classification on Apache Spark environment. The aim of… More >

  • Open Access

    ARTICLE

    An Imbalanced Dataset and Class Overlapping Classification Model for Big Data

    Mini Prince1,*, P. M. Joe Prathap2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1009-1024, 2023, DOI:10.32604/csse.2023.024277 - 15 June 2022

    Abstract Most modern technologies, such as social media, smart cities, and the internet of things (IoT), rely on big data. When big data is used in the real-world applications, two data challenges such as class overlap and class imbalance arises. When dealing with large datasets, most traditional classifiers are stuck in the local optimum problem. As a result, it’s necessary to look into new methods for dealing with large data collections. Several solutions have been proposed for overcoming this issue. The rapid growth of the available data threatens to limit the usefulness of many traditional methods.… More >

  • Open Access

    ARTICLE

    Evaluating Security of Big Data Through Fuzzy Based Decision-Making Technique

    Fawaz Alassery1, Ahmed Alzahrani2, Asif Irshad Khan2, Kanika Sharma3, Masood Ahmad4, Raees Ahmad Khan4,*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 859-872, 2023, DOI:10.32604/csse.2023.025796 - 01 June 2022

    Abstract In recent years, it has been observed that the disclosure of information increases the risk of terrorism. Without restricting the accessibility of information, providing security is difficult. So, there is a demand for time to fill the gap between security and accessibility of information. In fact, security tools should be usable for improving the security as well as the accessibility of information. Though security and accessibility are not directly influenced, some of their factors are indirectly influenced by each other. Attributes play an important role in bridging the gap between security and accessibility. In this… More >

Displaying 51-60 on page 6 of 200. Per Page