Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (170)
  • Open Access

    ARTICLE

    Accurate True Direction Solutions to the Euler Equations Using a Uniform Distribution Equilibrium Method

    Alex Ferguson1, Matthew R. Smith2, J.-S. Wu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.1, pp. 79-100, 2010, DOI:10.3970/cmes.2010.063.079

    Abstract A novel approach for the use of multiple continuous uniform distributions for reconstruction of the Maxwell-Boltzmann equilibrium probability distribution function is used for the solution of one and two dimensional Euler equations. The Uniform distribution Equilibrium Flux Method (UEFM) is a kinetic-theory based flux solver which calculates true directional, volume to volume fluxes based on integration (over velocity space and physical space) of a sum of uniform probability distribution functions working to approximate the equilibrium distribution function. The resulting flux expressions contain only the Heaviside unit step function and do not require the evaluation of More >

  • Open Access

    ABSTRACT

    Three-dimensional simulations on the formation of droplets in a T-type microchannel

    Jr-Ming Miao1,2, Fuh-Lin Lih3, Yi-Chun Liou4, Hsiu-Kai Chen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.1, pp. 33-34, 2009, DOI:10.3970/icces.2009.012.033

    Abstract To date, miniaturization of fluid handling and fluid analysis devices in the medicine engineering has been emerging in the interdisciplinary research field of micro-fluidics, as a result of miniaturization of the detective device to allow parallelization as well as to reduce analysis time and sample volume. Micro-total-analysis-system (μ -TAS) researches aimed at developing miniaturized and integrated ``lab-on-a-chip'' devices for biochemical analysis applications. Droplet-based micro-mixer is the one of the key components in the developing of μ-TAS. Numerical approach on the dynamic formation of water droplets in a T-type microchannel with a 200μm × 50μm rectangular cross section… More >

  • Open Access

    ABSTRACT

    Aeroelasticity analysis of wind turbine blades based on CFD-CSD coupling

    Wei Liu1, Yiwei Wang1, Yiran An1, Xianyue Su1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.1, pp. 27-28, 2009, DOI:10.3970/icces.2009.010.027

    Abstract Understanding the aeroelastic behavior of the blade is crucial to the design of large wind turbines, which has been attracting more and more research efforts. Essentially, the aeroelasticity problem of wind turbine blades is a fluid-solid interaction problem with obvious interface. At the present time, in the aeroelasticity analysis of wind turbine, CFD software based on the incompressible Reynolds-averaged Navier-Stokes (RANS) equations are not yet routinely used , in part because of the lack of experience with regard to the application of these software to various wind turbine rotors for a wide range of conditions… More >

  • Open Access

    ARTICLE

    Evaluations of Turbulence Models for Highly Swirling Flows in Cyclones

    I. Karagoz, F.Kaya

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.2, pp. 111-130, 2009, DOI:10.3970/cmes.2009.043.111

    Abstract The aim of this work is to investigate the suitability of various turbulence models and their options for highly complex swirling flows in tangential inlet cyclones. Three-dimensional, steady governing equations for the incompressible, turbulent flow inside the cyclone are solved numerically. The prediction performance of three popular turbulence models and various options available for these models was evaluated by comparing the computed velocity profiles and pressure drop with the experimental data given in the literature. Results obtained from the numerical tests have demonstrated that the swirl factor for the RNG k-emodel has considerably influence on More >

  • Open Access

    ARTICLE

    Numerical Simulation and Ventilation Efficiency of Bicycle Helmets

    T.Z. Desta1, G. De Bruyne1, J.-M. Aerts1, M. Baelmans2, D. Berckmans1

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.2, pp. 61-70, 2008, DOI:10.3970/cmes.2008.031.061

    Abstract This paper demonstrates the use of the concept of the local mean age of air (LMAA) to quantify ventilation effectiveness under bicycle rider's safety helmets. The specific objective is to study the effect of helmet openings on the resulting ventilation effectiveness. To quantify ventilation effectiveness using the concept of LMAA, dynamic tracer gas data are necessary. The data were generated using a Computational Fluid Dynamics (CFD) model. Two bicycle helmet designs were used and compared with respect to ventilation performance. The result showed that the helmet with more openings had better performance especially at the More >

  • Open Access

    ARTICLE

    Axially Running Wave in Liquid Bridge

    D.E. Melnikov1, V.M. Shevtsova2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.4, pp. 329-338, 2007, DOI:10.3970/fdmp.2007.003.329

    Abstract Thermocapillary convection in a long vertical liquid column (called liquid bridge) subjected to heating from above is considered for a three-dimensional Boussinesq fluid. The problem is solved numerically via finite-volume method. Full system of three dimensional Navier-Stokes equations coupled with the energy equation is solved for an incompressible fluid. Instability sets in through a wave propagating in axial direction with zero azimuthal wave number, which is a unique stable solution over a wide range of supercritical heating. Further increasing the applied temperature difference results in bifurcation of a second wave traveling azimuthally with a slightly More >

  • Open Access

    ARTICLE

    A CFD/CSD Model for Transonic Flutter

    Tong-qing Guo, Zhi-liang Lu1

    CMC-Computers, Materials & Continua, Vol.2, No.2, pp. 105-112, 2005, DOI:10.3970/cmc.2005.002.105

    Abstract In this paper, a rapid deforming technique is developed to generate dynamic, three-dimensional, multi-block, mesh. The second-order Runge-Kutta time-marching method is used to solve the structural equations of motion. A dual-time method and finite volume discretization are applied for the unsteady Euler/Navier-Stokes equations to calculate the aerodynamic forces, in which the physical time step is synchronous with the structural equations of motion. The Spalart-Allmaras turbulence model is adopted for a turbulent flow. Due to mass dissimilarity, exiting in flutter calculations for a compressible flow, methods of variable mass and variable stiffness are developed to calculate More >

  • Open Access

    ARTICLE

    Coalescence and Non-coalescence Phenomena in Multi-material Problems and Dispersed Multiphase Flows: Part 2, A Critical Review of CFD Approaches

    Marcello Lappa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.3, pp. 213-234, 2005, DOI:10.3970/fdmp.2005.001.213

    Abstract The physical properties of many emulsions and metal alloys strongly depend on the multiphase morphology which is controlled to a great degree by particle-particle interaction during the related processing. In the present article significant effort is devoted to illustrate the philosophy of modeling for these phenomena and some insights into the physics. Within such a context working numerical techniques that have enjoyed a widespread use over recent years are presented and/or reviewed. Finally a focused and critical comparison of these possible approaches is reported illustrating advantages and disadvantages, strengths and weaknesses, past history and future More >

  • Open Access

    ARTICLE

    Simulation Studies of A 76MM Hydrocyclone

    K.Udaya Bhaskar1,2, Sumit Tiwari2, N. Ramakrishnan2

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 13-22, 2005, DOI:10.3970/cmc.2005.002.013

    Abstract The investigation pertains to establishing a simulation methodology for understanding the separation characteristics of a typical hydrocyclone where the work was carried out using a commercially available CFD software. The studies included water flow profiles, water throughput {\&} product split, particle distribution etc. and the simulated results are further validated with suitably performed experiments. The work essentially highlights the performance of the hydrocyclone using numerical studies where water is used as a primary phase and solid particles as secondary ones. This methodology is expected to be useful in the design of hydrocyclones and optimizing the More >

  • Open Access

    ARTICLE

    Flow dynamics in Models of Intracranial Terminal Aneurysms

    Alvaro Valencia1

    Molecular & Cellular Biomechanics, Vol.1, No.3, pp. 221-232, 2004, DOI:10.3970/mcb.2004.001.221

    Abstract Flow dynamics play an important role in the pathogenesis and treatment of intracranial aneurysms. The evaluation of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils, and the temporal and spatial variations of wall shear stress in the aneurysm are correlated with its growth and rupture. This numerical investigation describes the hemodynamic in two models of terminal aneurysm of the basilar artery. Aneurysm models with a aspect ratio of 1.0 and 1.67 were studied. Each model was subject to physiological representative waveform of inflow for a More >

Displaying 161-170 on page 17 of 170. Per Page