Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11,053)
  • Open Access

    ARTICLE

    Computational Analysis of Surface and Subsurface Initiated Fatigue Crack Growth due to Contact Loading

    S. Glodež1, B. Aberšek1, G. Fajdiga2, J. Flašker2

    Structural Durability & Health Monitoring, Vol.1, No.3, pp. 215-224, 2005, DOI:10.3970/sdhm.2005.001.215

    Abstract A computational model for simulation of surface and subsurface initiated fatigue crack growth due to contact loading is presented. The model is based on fracture mechanics theory where the required materials properties are obtained from common fatigue tests. For computational simulations an equivalent model of two contacting cylinders is used instead of simulating the actual contact of mechanical elements. The discretised model with the initial crack on or under the surface is then subjected to normal contact pressure, which takes into account the elasto-hydro-dynamic (EHD) lubrication conditions, and tangential loading due to friction between contacting More >

  • Open Access

    ARTICLE

    An Improved Wheeler Model for Remaining Life Prediction of Cracked Plate Panels Under Tensile-Compressive Overloading

    A. Rama Ch,ra Murthy1, G.S. Palani1, Nagesh R. Iyer1

    Structural Durability & Health Monitoring, Vol.1, No.3, pp. 203-214, 2005, DOI:10.3970/sdhm.2005.001.203

    Abstract This paper presents an improved Wheeler residual stress model for remaining life prediction of the cracked structural components under variable amplitude loading. The improvement to the Wheeler residual stress model is in two folds. One is expressions for the shaping exponent, which are generally obtained through experiments. Another is calculation of effective plastic zone size to incorporate the sequent effects under tensile-compressive overloading. The remaining life prediction has been carried out by employing the linear elastic fracture mechanics (LEFM) principles. Studies on remaining life prediction of cracked plate panels subjected to tensile-compressive overloading have been More >

  • Open Access

    ARTICLE

    Cyclic plasticity and damage of a metal matrix composite by a gradient-enhanced CDM model

    G. Minak1, F. E. G. Chimisso2, H. S. Costa Mattos3

    Structural Durability & Health Monitoring, Vol.1, No.3, pp. 193-202, 2005, DOI:10.3970/sdhm.2005.001.193

    Abstract Cyclic plasticity and damage of a metal matrix composite have been studied in the framework of continuum damage mechanics. The material was considered as macroscopically homogeneous and a model incorporating damage gradient was applied. Strain-controlled fully reversed low-cycle fatigue uniaxial tests were performed to identify material parameters related to yield stress, isotropic and kinematic hardening, fatigue life and damage diffusion. From previous studies it has been found that in the most general case the parameters of the model are constant or depend exponentially on total strain so that only two or three tests are needed More >

  • Open Access

    ARTICLE

    Vibration Fatigue Analysis of Cylinder Head of a New Two-Stroke Free Poston Engine Using Finite Element Approach

    M. M. Rahman1, A. K. Ariffin1, N. Jamaludin1, C. H. C. Haron1

    Structural Durability & Health Monitoring, Vol.1, No.2, pp. 121-130, 2005, DOI:10.3970/sdhm.2005.001.121

    Abstract The focus of this paper is to design a new two-stroke linear generator engine. This paper describes the finite element based vibration fatigue analysis techniques that can be used to predict fatigue life using total life approach. Fatigue damage in traditionally determined from time signals of loading, usually in the form of stress and strain. However, there are scenarios when a spectral form of loading is more appropriate. In this case the loading is defined in terms of its magnitude at different frequencies in the form of a power spectral density (PSD) plot. A power… More >

  • Open Access

    ARTICLE

    Reliable Fracture Analysis of OF 2-D Crack Problems Using NI-MVCCI Technique

    G.S. Palani1, Nagesh R. Iyer1, B. Dattaguru2

    Structural Durability & Health Monitoring, Vol.1, No.2, pp. 107-120, 2005, DOI:10.3970/sdhm.2005.001.107

    Abstract A posteriori error estimation and adaptive refinement technique for 2-D/3-D crack problems is the state-of-the-art. In this paper a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region has been proposed and used along with the stress based error estimator for reliable fracture analysis of 2-D crack problems. The proposed a posteriori error estimator is called the K-S error estimator. Further, h-adaptive mesh refinement strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance More >

  • Open Access

    ARTICLE

    Contractile Torque as a Steering Mechanism for Orientation of Adherent Cells

    Dimitrije Stamenovic´ 1

    Molecular & Cellular Biomechanics, Vol.2, No.2, pp. 69-76, 2005, DOI:10.3970/mcb.2005.002.069

    Abstract It is well established that adherent cells change their orientation in response to non-uniform substrate stretching. Most observations indicate that cells orient away from the direction of the maximal substrate strain, whereas in some cases cells also align with the direction of the maximal strain. Previous studies suggest that orientation and steering of the cell may be closely tied to cytoskeletal contractile stress but they could not explain the mechanisms that direct cell reorientation. This led us to develop a simple, mechanistic theoretical model that could predict a direction of cell orientation in response to More >

  • Open Access

    ARTICLE

    Interfacial Strength of Cement Lines in Human Cortical Bone

    X. Neil Dong1,2, Xiaohui Zhang1, X. Edward Guo1

    Molecular & Cellular Biomechanics, Vol.2, No.2, pp. 63-68, 2005, DOI:10.3970/mcb.2005.002.063

    Abstract In human cortical bone, cement lines (or reversal lines) separate osteons from the interstitial bone tissue, which consists of remnants of primary lamellar bone or fragments of remodeled osteons. There have been experimental evidences of the cement line involvement in the failure process of bone such as fatigue and damage. However, there are almost no experimental data on interfacial properties of cement lines in human cortical bone. The objective of this study is to design and assemble a precision and computer controlled osteon pushout microtesting system, and to experimentally determine the interfacial strength of cement… More >

  • Open Access

    ARTICLE

    Remodeling of Strain Energy Function of Common Bile Duct post Obstruction

    Quang Dang1,1, Hans Gregersen2,2, Birgitte Duch2,2, Ghassan S. Kassab1,1

    Molecular & Cellular Biomechanics, Vol.2, No.2, pp. 53-62, 2005, DOI:10.3970/mcb.2005.002.053

    Abstract Biliary duct obstruction is an important clinical condition that affects millions of people worldwide. We have previously shown that the common bile duct (CBD) undergoes significant growth and remodelling post obstruction. The mechanical stress-strain relation is expected to change due to growth and remodeling in response to obstruction and hence pressure-overload. The objective of the present study was to characterize the material properties of the CBD of the sham group and at 3 hours, 12 hours, 2 days, 8 days and 32 days (n=5 in each group) after obstruction. The Fung's exponential strain energy function… More >

  • Open Access

    ARTICLE

    The Effect of Longitudinal Pre-Stretch and Radial Constraint on the Stress Distribution in the Vessel Wall: A New Hypothesis

    Wei Zhang1,2, Carly Herrera1, Satya N. Atluri1, Ghassan S. Kassab2,3

    Molecular & Cellular Biomechanics, Vol.2, No.1, pp. 41-52, 2005, DOI:10.3970/mcb.2005.002.041

    Abstract It is well known that blood vessels shorten axially when excised. This is due to the perivascular tethering constraint by side branches and the existence of pre-stretch of blood vessels at the \textit {in situ} state. Furthermore, vessels are radially constrained to various extents by the surrounding tissues at physiological loading. Our hypothesis is that the axial pre-stretch and radial constraint by the surrounding tissue homogenizes the stress and strain distributions in the vessel wall. A finite element analysis of porcine coronary artery and rabbit thoracic aorta based on measured material properties, geometry, residual strain More >

  • Open Access

    ARTICLE

    Growth, Anisotropy, and Residual Stresses in Arteries

    K. Y. Volokh 1, 2 , Y. Lev3

    Molecular & Cellular Biomechanics, Vol.2, No.1, pp. 27-40, 2005, DOI:10.3970/mcb.2005.002.027

    Abstract A simple phenomenological theory of tissue growth is used in order to demonstrate that volumetric growth combined with material anisotropy can lead to accumulation of residual stresses in arteries. The theory is applied to growth of a cylindrical blood vessel with the anisotropy moduli derived from experiments. It is shown that bending resultants are developed in the ring cross-section of the artery. These resultants may cause the ring opening or closing after cutting the artery \textit {in vitro} as it is observed in experiments. It is emphasized that the mode of the arterial ring opening More >

Displaying 10851-10860 on page 1086 of 11053. Per Page