Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9,930)
  • Open Access


    The Parallel Mechanism of Node-Based Seamless Finite Element Method

    Y.F. Nie1, S. Chang1, X.K. Fan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.2, pp. 135-144, 2007, DOI:10.3970/cmes.2007.019.135

    Abstract A new parallel mechanism for Node-based Seamless Finite Element Method was proposed in this paper, which possessed the following three prominent points: realizing the workload balance for the parallel processes naturally, achieving synchronization of all the schedules under complex parallel environment, and filling up the gap between pre-processing and main processing. To support the scheme, three specific solutions of the parallel mechanism were proposed in this paper, all of which achieved the highly efficient parallel seamless connection between the FEM mesh generation process and structure analysis process. Two of the three schemes, i.e. dynamic scheme More >

  • Open Access


    Molecular Mechanics Based Finite Element For Carbon Nanotube Modeling

    T.C. Theodosiou1, D.A. Saravanos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.2, pp. 121-134, 2007, DOI:10.3970/cmes.2007.019.121

    Abstract In this paper a new method is introduced for carbon nanotube modeling combining features of Molecular Mechanics and Finite Element Analysis. Repetitive atomic cells are treated as finite elements, whose internal energy is determined by the semi-empirical Brenner molecular potential model; internal forces and linearized stiffness matrices are formulated analytically in order to gain in speed and accuracy, and the resultant discrete system is formulated and solved using the Newton-Raphson method. The presented method is validated through comparisons to numerical and experimental results provided by other researchers. The bending and shearing of CNTs is also More >

  • Open Access


    Analyzing Production-Induced Subsidence using Coupled Displacement Discontinuity and Finite Element Methods

    Shunde Yin1, Leo Rothenburg1, Maurice B. Dusseault1

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.2, pp. 111-120, 2007, DOI:10.3970/cmes.2007.019.111

    Abstract Subsidence problem is of great importance in petroleum engineering and environmental engineering. In this paper, we firstly apply a hybrid Displacement Discontinuity-FEM modeling to this classic problem: the evaluation of subsidence over a compacting oil reservoir. We use displacement discontinuity method to account for the reservoir surrounding area, and finite element methods in the fully coupled simulation of the reservoir itself. This approach greatly reduces the number of degrees of freedom compared to an analyzing fully coupled problem using only a finite element or finite difference discretization. More >

  • Open Access


    A Novel Form of Reproducing Kernel Interpolation Method with Applications to Nonlinear Mechanics

    Amit Shaw1, D Roy2

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.1, pp. 69-98, 2007, DOI:10.3970/cmes.2007.019.069

    Abstract A novel discretization strategy and derivative reproduction based on reproducing kernel (RK) particle approximations of functions are proposed. The proposed scheme is in the form of an RK interpolation that offers significant numerical advantages over a recent version of the strategy by Chen et al. (2003), wherein the authors added a set of primitive functions to the reproducing kernel (enrichment) functions. It was also required that the support size of the primitive function be less than the smallest distance between two successive grid points. Since the primitive function was required to vary from 0 to… More >

  • Open Access


    Adaptive Random Field Mesh Refinements in Stochastic Finite Element Reliability Analysis of Structures

    M. Manjuprasad1, C. S. Manohar2

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.1, pp. 23-54, 2007, DOI:10.3970/cmes.2007.019.023

    Abstract A technique for adaptive random field refinement for stochastic finite element reliability analysis of structures is presented in this paper. Refinement indicator based on global importance measures are proposed and used for carrying out adaptive random field mesh refinements. Reliability index based error indicator is proposed and used for assessing the percentage error in the estimation of notional failure probability. Adaptive mesh refinement is carried out using hierarchical graded mesh obtained through bisection of elements. Spatially varying stochastic system parameters (such as Young's modulus and mass density) and load parameters are modeled in general as… More >

  • Open Access


    Analysis of Shell Deformation Responses by the Meshless Local Petrov-Galerkin (MLPG) Approach

    T. Jarak1, J. Sorić1, J. Hoster1

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.3, pp. 235-246, 2007, DOI:10.3970/cmes.2007.018.235

    Abstract A meshless computational method based on the local Petrov-Galerkin approach for the analysis of shell structures is presented. A concept of a three dimensional solid, allowing the use of completely 3-D constitutive models, is applied. Discretization is carried out by using both a moving least square approximation and polynomial functions. The exact shell geometry can be described. Thickness locking is eliminated by using a hierarchical quadratic approximation over the thickness. The shear locking phenomena in case of thin structures and the sensitivity to rigid body motions are minimized by applying interpolation functions of sufficiently high More >

  • Open Access


    Weight Optimization of Skeletal Structures with Multi-Point Simulated Annealing

    L. Lamberti1,2, C. Pappalettere1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.3, pp. 183-222, 2007, DOI:10.3970/cmes.2007.018.183

    Abstract This paper presents a novel optimization algorithm for minimizing weight of skeletal structures. The algorithm--denoted as MPISA (Multi Point Improved Simulated Annealing)--utilizes a multi-level simulated annealing scheme where different candidate designs are compared simultaneously. This is done in purpose to increase computational efficiency and to minimize the number of exact structural analyses.
    MPISA is tested in three complicated design problems of skeletal structures: (i) sizing optimization of a planar bar truss under five independent loading conditions including 200 design variables; (ii) sizing-configuration optimization of a cantilevered bar truss including 81 design variables; (iii) sizing-configuration optimization More >

  • Open Access


    Buckling and Free Vibrations of Sandwich General shells of Revolution with Composite facings and Viscoelastic core under Thermal Environment using Semi-analytical Method

    Sharnappa1, N. Ganesan2, Raju Sethuraman3

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.2, pp. 121-144, 2007, DOI:10.3970/cmes.2007.018.121

    Abstract This article presents the study on buckling and free vibration behavior of sandwich general shells of revolution under thermal environment using Wilkins theory. The temperature assumes to be uniform over the shell structure. The numerical analysis is based on the semi-analytical finite element method applicable to thick shells. The analysis is carried out for different geometry such as truncated conical and hemispherical shells with various facing and core materials under clamped-clamped boundary condition. The parametric study is carried out for different core to facing (tc / tf) thickness ratio by considering the temperature dependent and independent More >

  • Open Access


    A Geometrical Comparison between Cell Method and Finite Element Method in Electrostatics

    M. Heshmatzadeh, G. E. Bridges1

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.1, pp. 45-58, 2007, DOI:10.3970/cmes.2007.018.045

    Abstract Cell Method, a Finite Formulation technique, is compared in detail with the Finite Element Method (FEM), a differential-based numerical technique. In the finite formulation technique, Poisson's equation is described starting from a topological foundation. The final set of algebraic equations resulting from the two approaches are compared in matrix form. The equivalence of the coefficient matrices is proven for a Voronoi dual mesh and linear shape functions in the FEM. The difference between the source (charge) vectors in the two approaches is described. It is shown that the use of linear shape functions in the More >

  • Open Access


    Hypersingular BEM for Piezoelectric Solids: Formulation and Applications for Fracture Mechanics

    J.A. Sanz, M. Solis, J. Dominguez1

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.3, pp. 215-230, 2007, DOI:10.3970/cmes.2007.017.215

    Abstract A general mixed boundary element formulation for three-dimensional piezoelectric fracture mechanics problems is presented in this paper. The numerical procedure is based on the extended displacement and traction integral equations for external and crack boundaries, respectively. Integrals with strongly singular and hypersingular kernels appearing in the formulation are analytically transformed into weakly singular and regular integrals. Quadratic boundary elements and quarter-point boundary elements are implemented in a direct way in a computer code. Electric and stress intensity factors are directly computed from nodal values at quarter-point elements. Crack problems in 3D piezoelectric bounded and unbounded More >

Displaying 9491-9500 on page 950 of 9930. Per Page