Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11,305)
  • Open Access

    ARTICLE

    Multiscale Nonlinear Thermo-Mechanical Coupling Analysis of Composite Structures with Quasi-Periodic Properties

    Zihao Yang1, Liang Ma2, Qiang Ma3, Junzhi Cui1,4, Yufeng Nie1, Hao Dong1, Xiaohong An5

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 219-248, 2017, DOI:10.32604/cmc.2017.053.235

    Abstract This paper reports a multiscale analysis method to predict the thermo-mechanical coupling performance of composite structures with quasi-periodic properties. In these material structures, the configurations are periodic and the material coefficients are quasi-periodic, i.e., they depend not only on the microscale information but also on the macro location. Also, a mutual interaction between displacement and temperature fields is considered in the problem, which is our particular interest in this study. The multiscale asymptotic expansions of the temperature and displacement fields are constructed and associated error estimation in nearly pointwise sense is presented. Then, a finite More >

  • Open Access

    ARTICLE

    Cycle Time Reduction in Injection Molding by Using Milled Groove Conformal Cooling

    Mahesh S. Shinde1,*, Kishor M. Ashtankar2

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 207-217, 2017, DOI:10.32604/cmc.2017.053.223

    Abstract This paper presents simulation study on Milled Grooved conformal cooling channels (MGCCC) in injection molding. MGCCC has a more effective cooling surface area which helps to provide efficient cooling as compared to conventional cooling. A case study of Encloser part is investigated for cycle time reduction and quality improvement. The performance designs of straight drilled are compared with MGCCC by using Autodesk Moldflow Insight (AMI) 2016. The results show total 32.1% reduction of cooling time and 9.86% reduction of warpage in case of MGCCC as compared to conventional cooling. More >

  • Open Access

    ARTICLE

    The Stable Explicit Time Stepping Analysis with a New Enrichment Scheme by XFEM

    Xue-cong Liu1, Qing Zhang1,*, Xiao-zhou Xia1

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 187-206, 2017, DOI:10.3970/cmc.2017.053.203

    Abstract This paper focuses on the study of the stability of explicit time integration algorithm for dynamic problem by the Extended Finite Element Method (XFEM). A new enrichment scheme of crack tip is proposed within the framework of XFEM. Then the governing equations are derived and evolved into the discretized form. For dynamic problem, the lumped mass and the explicit time algorithm are applied. With different grid densities and different forms of Newmark scheme, the Dynamic Stress Intensity Factor (DSIF) is computed by using interaction integral approach to reflect the dynamic response. The effectiveness of the More >

  • Open Access

    ARTICLE

    Control Mechanism of Surface Subsidence and Overburden Movement in Backfilling Mining based on Laminated Plate Theory

    Zhengzheng Cao1, Feng Du2,3,4, Ping Xu1, Haixiao Lin1, Yi Xue3, Yuejin Zhou3

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 175-186, 2017, DOI:10.3970/cmc.2017.053.187

    Abstract The backfilling mining technology is a type of high-efficiency coal mining technology that is used to address the environmental issues caused by the caving mining technology. In this paper, the mechanical model of symmetrical laminated plate representing the overburden movement caused by the backfilling mining technology is established, and the governing differential equation of the motion of the overburden is derived. The boundary conditions of the mechanical model are put forward, and the analytical solution of the overburden movement and surface subsidence is obtained. The numerical model of the overburden movement and surface subsidence, under… More >

  • Open Access

    ARTICLE

    Prediction of Compressive Strength of Self-Compacting Concrete Using Intelligent Computational Modeling

    Susom Dutta1, A. Ramach,ra Murthy2, Dookie Kim3, Pijush Samui4

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 157-174, 2017, DOI:10.3970/cmc.2017.053.167

    Abstract In the present scenario, computational modeling has gained much importance for the prediction of the properties of concrete. This paper depicts that how computational intelligence can be applied for the prediction of compressive strength of Self Compacting Concrete (SCC). Three models, namely, Extreme Learning Machine (ELM), Adaptive Neuro Fuzzy Inference System (ANFIS) and Multi Adaptive Regression Spline (MARS) have been employed in the present study for the prediction of compressive strength of self compacting concrete. The contents of cement (c), sand (s), coarse aggregate (a), fly ash (f), water/powder (w/p) ratio and superplasticizer (sp) dosage More >

  • Open Access

    ARTICLE

    Influence of functionalization on the structural and mechanical properties of graphene

    L.S. Melro1,2, L.R. Jensen1

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 109-127, 2017, DOI:10.3970/cmc.2017.053.111

    Abstract Molecular dynamics simulations were applied in order to calculate the Young’s modulus of graphene functionalized with carboxyl, hydroxyl, carbonyl, hydrogen, methyl, and ethyl groups. The influence of the grafting density with percentages of 3, 5, 7, and 10% and the type of distribution as a single cluster or several small clusters were also studied. The results show that the elastic modulus is dependent on the type of functional groups. The increasing coverage density also evidenced a decrease of the Young’s modulus, and the organization of functional groups as single cluster showed a lesser impact than More >

  • Open Access

    ARTICLE

    A Machine Learning Approach for MRI Brain Tumor Classification

    Ravikumar Gurusamy1, Dr Vijayan Subramaniam2

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 91-108, 2017, DOI:10.3970/cmc.2017.053.091

    Abstract A new method for the denoising, extraction and tumor detection on MRI images is presented in this paper. MRI images help physicians study and diagnose diseases or tumors present in the brain. This work is focused towards helping the radiologist and physician to have a second opinion on the diagnosis. The ambiguity of Magnetic Resonance (MR) image features is solved in a simpler manner. The MRI image acquired from the machine is subjected to analysis in the work. The real-time data is used for the analysis. Basic preprocessing is performed using various filters for noise More >

  • Open Access

    ARTICLE

    A Fuzzy Approach for an IoT-based Automated Employee Performance Appraisal

    Jaideep Kaur1, Kamaljit Kaur2

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 23-36, 2017, DOI:10.3970/cmc.2017.053.024

    Abstract The ubiquitous Internet of Things (IoT) through RFIDs, GPS, NFC and other wireless devices is capable of sensing the activities being carried around Industrial environment so as to automate industrial processes. In almost every industry, employee performance appraisal is done manually which may lead to favoritisms. This paper proposes a framework to perform automatic employee performance appraisal based on data sensed from IoT. The framework classifies raw IoT data into three activities (Positive, Negative, Neutral), co-locates employee and activity in order to calculate employee implication and then performs cognitive decision making using fuzzy logic. From More >

  • Open Access

    ARTICLE

    Knockdown of SLC34A2 Inhibits Hepatocellular Carcinoma Cell Proliferation and Invasion

    Yanhua Li*1, Xia Chen†1, Hong Lu*

    Oncology Research, Vol.24, No.6, pp. 511-519, 2016, DOI:10.3727/096504016X14719078133483

    Abstract The gene solute carrier family 34 (sodium phosphate), member 2 (SLC34A2), is a member of the SLC34 family. Increasing evidence suggests that SLC34A2 is involved in the development of many human carcinomas. However, its role in hepatocellular carcinoma (HCC) is still unclear. Therefore, in this study we investigated the role of SLC34A2 in HCC and explored the underlying mechanism. We found that the expression of SLC34A2 is upregulated in HCC cell lines. Knockdown of SLC34A2 obviously inhibited HCC cell proliferation, migration/invasion, and the epithelial–mesenchymal transition (EMT) phenotype. Furthermore, knockdown of SLC34A2 significantly inhibited the expression More >

  • Open Access

    ARTICLE

    Knockdown of Collagen Triple Helix Repeat Containing-1 Inhibits the Proliferation and Epithelial-to-Mesenchymal Transition in Renal Cell Carcinoma Cells

    Xue-fei Jin, Hai Li, Shi Zong, Hong-yan Li

    Oncology Research, Vol.24, No.6, pp. 477-485, 2016, DOI:10.3727/096504016X14685034103716

    Abstract Collagen triple helix repeat containing-1 (CTHRC1), a secreted glycoprotein, is frequently upregulated in human cancers. However, the functional role of CTHRC1 in renal cell carcinoma (RCC) remains unclear. Thus, the aim of this study was to explore the role of CTHRC1 in RCC. Our results demonstrated that CTHRC1 was upregulated in RCC tissues and cell lines. Knockdown of CTHRC1 significantly inhibits the proliferation in RCCs. Furthermore, knockdown of CTHRC1 significantly inhibited the epithelial-to-mesenchymal transition (EMT) process in RCCs, as well as suppressed RCC cell migration and invasion. Mechanistically, knockdown of CTHRC1 inhibited the expression of More >

Displaying 9491-9500 on page 950 of 11305. Per Page