Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access


    Optimisation Strategy of Carbon Dioxide Methanation Technology Based on Microbial Electrolysis Cells

    Qifen Li, Xiaoxiao Yan*, Yongwen Yang, Liting Zhang, Yuanbo Hou

    Journal of Renewable Materials, Vol.11, No.7, pp. 3177-3191, 2023, DOI:10.32604/jrm.2023.027749

    Abstract Microbial Electrolytic Cell (MEC) is an electrochemical reaction device that uses electrical energy as an energy input and microorganisms as catalysts to produce fuels and chemicals. The regenerative electrochemical system is a MEC improvement system for methane gas produced by biological carbon sequestration technology using renewable energy sources to provide a voltage environment. In response to the influence of fluctuating disturbances of renewable electricity and the long system start-up time, this paper analyzes the characteristics of two strategies, regulating voltage parameter changes and activated sludge pretreatment, on the methane production efficiency of the renewable gas electrochemical system. In this system,… More >

  • Open Access



    Yan Chena , Qingxin Bab,*, Xuefang Lib

    Frontiers in Heat and Mass Transfer, Vol.16, No.1, pp. 1-9, 2021, DOI:10.5098/hmt.16.18

    Abstract The heat transfer of supercritical CO2/DME mixtures was modeled in this study for a mass ratio of 95/5 for cooling in horizontal helically coiled tubes. The CO2/DME heat transfer coefficient was higher in the high-temperature zone than with pure CO2. The heat transfer of CO2/DME (95/5) was predicted for various mass fluxes, heat fluxes and pressures. The CO2/DME heat transfer coefficient increased with the mass flux due to the increased turbulent diffusion, and first increased but then decreased with the heat flux. The peak heat transfer coefficient of CO2/DME shifted toward the high-temperature region as the operating pressure increased. The… More >

  • Open Access



    Ameer Abed Jaddoa* , Hussain Saad Abd

    Frontiers in Heat and Mass Transfer, Vol.20, No.1, pp. 1-12, 2023, DOI:10.5098/hmt.20.6

    Abstract In this work, the demeanour of heat transfer in a cooled upstanding turbulent flow condition of supercritical carbon dioxide SC- CO2 was investigated and analyzed. Several scenarios were adopted to handle the experimental data acquired by applying a perpendicular pipe with bending tape used in the examination model. The outcomes were presented using a typical method 'the dimensionless constitution'. Also, a modification was achieved to improve the relationship among the parameters for the processes of up and down flows. The achieved results will help address this research gap on turbulent perpendicular compound heat load based on cooling conditions. Finally, the… More >

  • Open Access


    Dynamic Modeling and Sensitivity Analysis for an MEA-Based CO2 Capture Absorber

    Hongwei Guan1, Lingjian Ye2,3,*, Yurun Wang2, Feifan Shen4, Yuchen He3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3535-3550, 2023, DOI:10.32604/iasc.2023.036399

    Abstract The absorber is the key unit in the post-combustion monoethanolamine (MEA)-based carbon dioxide (CO2) capture process. A rate-based dynamic model for the absorber is developed and validated using steady-state experimental data reported in open literature. Sensitivity analysis is performed with respect to important model parameters associated with the reaction, mass transport and physical property relationships. Then, a singular value decomposition (SVD)-based subspace parameter estimation method is proposed to improve the model accuracy. Finally, dynamic simulations are carried out to investigate the effects of the feed rate of lean MEA solution and the flue inlet conditions. Simulation results indicate that the… More >

  • Open Access


    Research on the Corrosion of J55 Steel Due to Oxygen-Reducing Air Flooding in Low-Permeability Reservoirs

    Liang Wang1, Baofeng Hou1, Yanming Fang3, Jintao Zhang2, Fajian Nie1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1925-1937, 2023, DOI:10.32604/fdmp.2023.025966

    Abstract Oxygen-reducing air flooding is a low-permeability reservoir recovery technology with safety and low-cost advantages. However, in the process of air injection and drive, carbon in the air is oxidized through the crude oil reservoir to generate CO2, and this can cause serious corrosion in the recovery well. In this study, experiments on the corrosion of J55 tubular steel in a fluid environment with coexisting O2 and CO2 in an autoclave are presented. In particular, a weight loss method and a 3D morphometer were used to determine the average and the local corrosion rate. The corrosion surface morphology and composition were… More >

  • Open Access


    Modeling CO2 Emission in Residential Sector of Three Countries in Southeast of Asia by Applying Intelligent Techniques

    Mohsen Sharifpur1,2, Mohamed Salem3, Yonis M Buswig4, Habib Forootan Fard5, Jaroon Rungamornrat6,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5679-5690, 2023, DOI:10.32604/cmc.2023.034726

    Abstract Residential sector is one of the energy-consuming districts of countries that causes CO2 emission in large extent. In this regard, this sector must be considered in energy policy making related to the reduction of emission of CO2 and other greenhouse gases. In the present work, CO2 emission related to the residential sector of three countries, including Indonesia, Thailand, and Vietnam in Southeast Asia, are discussed and modeled by employing Group Method of Data Handling (GMDH) and Multilayer Perceptron (MLP) neural networks as powerful intelligent methods. Prior to modeling, data related to the energy consumption of these countries are represented, discussed,… More >

  • Open Access


    Title Supersonic Condensation and Separation Characteristics of CO2-Rich Natural Gas under Different Pressures

    Yong Zheng1, Lei Zhao1, Yujiang Wang1, Feng Chang1, Weijia Dong2,*, Xinying Liu2, Yunfei Li2, Xiaohan Zhang2, Ziyuan Zhao3

    Energy Engineering, Vol.120, No.2, pp. 529-540, 2023, DOI:10.32604/ee.2023.022765

    Abstract Supersonic separation technology is a new natural gas sweetening method for the treatment of natural gas with high CO2 (carbon dioxide) content. The structures of the Laval nozzle and the supersonic separator were designed, and the mathematical models of supersonic condensation and swirling separation for CO2-CH4 mixture gas were established. The supersonic condensation characteristics of CO2 in natural gas and the separation characteristics of condensed droplets under different inlet pressures were studied. The results show that higher inlet pressure results in a larger droplet radius and higher liquid phase mass fraction; additionally, the influence of centrifugal force is more pronounced,… More >

  • Open Access


    Exergo-Environmental Study of a Recent Organic Solar Hybrid Heat Pump

    Rabeb Toujani, Nahla Bouaziz*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 991-1001, 2023, DOI:10.32604/fdmp.2022.022239

    Abstract A hybrid heat pump (compression/absorption) with an integrated thermal photovoltaic unit is studied. The considered working fluids are organic mixtures: R245fa/DMAC and R236fa/DMAC, chosen for their low Global Warming Potential. The main objective is the optimization of energy efficiency in order to minimize the environmental impact through the implementation of a sustainable strategy. It is shown that Exergy Analysis itself is a valuable tool in energy integration. Within the imposed framework of minimizing total annual costs, entropy analysis can be instrumental in determining the optimal plant concept, optimizing energy conversion and use, and improving profitability. The present results are discussed… More >

  • Open Access


    CO2-Responsive Smart Foams Stabilized by an Extremely Rigid Bio-Based Surfactant

    Weishan Tang, Xin Feng, Caiyun Lin, Xiaoping Rao*

    Journal of Renewable Materials, Vol.11, No.2, pp. 523-538, 2023, DOI:10.32604/jrm.2022.022809

    Abstract Environment friendly and intelligent surfactants have attracted great attention in recent years. A bio-based CO2 responsive surfactant rosin acid dimaleimide choline (R-BMI-C) with an extremely rigid skeleton was prepared using rosin and choline as raw materials by Diels-Alder addition reaction and acid-base neutralization reactions. Its structure was confirmed by IR and 1H NMR spectra. The foams’ properties of R-BMI-C could be adjusted by bubbling CO2/N2 to change the structure of the surfactant. At pH 10.4, R-BMI-C forms an unstable foam with a half-life of 1.5 h. When the pH was reduced to 7.4 by bubbling CO2, R-BMI-C forms an extremely… More > Graphic Abstract

    CO<sub>2</sub>-Responsive Smart Foams Stabilized by an Extremely Rigid Bio-Based Surfactant

  • Open Access


    Kinetics of the Demineralization Reaction of Deproteinized Lobster Shells Using CO2

    Miguel Ángel Ramírez1, Luis Alfonso, Patricia González2, Juan Reinerio Fagundo2, Margaret Suarez3, Clara Melian3, Tania Rodríguez1, Carlos Peniche4,*

    Journal of Renewable Materials, Vol.3, No.1, pp. 73-80, 2015, DOI:10.7569/JRM.2014.634116

    Abstract The demineralization kinetics of deproteinized lobster shells using CO2 were studied. Demineralization reaction proceeds until the concentration of Ca+2 in solution reaches an equilibrium value. The introduction of a cation exchange resin (cationite), in an open system for CO2 , allows replacement of the solution Ca2+ ions by Na+ ions, whereby the equilibrium shifts and an effective dissolution of the exoskeletons’ calcite is achieved. The mathematical relationships between the conductivity of the solution and the concentrations of major ions, the rate constants and kinetic parameters of the reaction in the absence and presence of the resin were obtained. It was… More >

Displaying 1-10 on page 1 of 34. Per Page  

Share Link