Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    Proteasome Inhibitor MG132 Enhances Cisplatin-Induced Apoptosis in Osteosarcoma Cells and Inhibits Tumor Growth

    Farui Sun*, Yuanjin Zhang*, Lijun Xu*, Songbai Li*, Xiang Chen*, Ling Zhang*, Yifan Wu, Jun Li*

    Oncology Research, Vol.26, No.4, pp. 655-664, 2018, DOI:10.3727/096504017X15119525209765

    Abstract Although cisplatin has been shown to be an integral part of chemotherapy regimen in osteosarcoma (OS) treatment, toxicity issues and chemoresistance have hindered therapeutic development for OS. Exploring novel combination therapy methods is needed to circumvent the limitations of cisplatin alone. The proteasome inhibitor MG132 has shown antitumor effects in many solid tumors. However, little is known about its effects in combination with cisplatin in OS cells. In this study, we examined the effects of MG132 in combination with cisplatin in human OS cells (MG-63 and HOS). MG132 and cisplatin were applied to OS cells,… More >

  • Open Access

    ARTICLE

    MicroRNA-374a Promotes Hepatocellular Carcinoma Cell Proliferation by Targeting Mitogen-Inducible Gene 6 (MIG-6)

    Hui Li*1, Huicheng Chen†1, Haibin Wang, Yilong Dong, Min Yin, Liang Zhang§, Jia Wei*

    Oncology Research, Vol.26, No.4, pp. 557-563, 2018, DOI:10.3727/096504017X15000784459799

    Abstract Hepatocellular carcinoma (HCC) is a disease with poor prognosis rates and ineffective therapeutic options. Previous studies have reported the involvement of mitogen-inducible gene 6 (MIG-6) as a negative regulator in tumor formation. MicroRNAs (miRNAs) play crucial roles in the development of different types of cancer. However, the underlying mechanisms of miRNAs in HCC are poorly understood. This study was aimed to investigate the role of miR-374a in HCC and its role in the regulation of expression of MIG-6. The results showed that MIG-6 overexpression significantly inhibited cell viability of HepG2 cells after 4 days posttransfection. More >

  • Open Access

    ARTICLE

    Knockdown of Long Noncoding RNA LUCAT1 Inhibits Cell Viability and Invasion by Regulating miR-375 in Glioma

    Yan-Sheng Gao*, Xian-Zhi Liu, Yong-Gang Zhang*, Xian-Jin Liu*, Ling-Zhen Li

    Oncology Research, Vol.26, No.2, pp. 307-313, 2018, DOI:10.3727/096504017X15088061795756

    Abstract Recently, long noncoding RNAs (lncRNAs) have emerged as new gene regulators and prognostic markers in several cancers, including glioma. Here we focused on lncRNA LUCAT1 on the progression of glioma. qRT-PCR was used to determine the expression of LUCAT1 and miR-375 in glioma tissues and cells. MTT and Transwell invasion assays were performed to determine the function of LUCAT1 in glioma progression. The bioinformatics tool DIANA was used to predict the targets of LUCAT1. Pearson’s correlation analysis was performed to explore the correlation between LUCAT1 and miR-375. In the present study, we showed that LUCAT1… More >

  • Open Access

    ARTICLE

    MicroRNA-1284 Inhibits Cell Viability and Induces Apoptosis of Ovarian Cancer Cell Line OVCAR3

    Changqing Pan, Dan Wang, Yao Zhang, Wenliang Yu

    Oncology Research, Vol.24, No.6, pp. 429-435, 2016, DOI:10.3727/096504016X14685034103518

    Abstract Ovarian cancer is a malignancy with high mortality among women. Multiple reports show that microRNAs (miRs) act as regulators in ovarian cancer inhibition, while the role of miR-1284 in ovarian cancer is still unknown. This study aimed to investigate the effects of miR-1284 on ovarian cancer cells. Human ovarian cancer cell line OVCAR3 was cultured and transfected with miR-1284 mimics, inhibitors, or control. Viability and apoptosis of transfected cells were then determined by MTT assay, BrdU assay, and flow cytometry. Expression changes of p27, p21, and PI3K/Akt pathway-related proteins were measured by Western blot. Results More >

Displaying 11-20 on page 2 of 14. Per Page