Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Poly (Butylene Adipate-Co-Terephthalate) and Poly (Ɛ-Caprolactone) and Their Bionanocomposites with Cellulose Nanocrystals: Thermo-Mechanical Properties and Cell Viability Study

    Marcia Cristina Branciforti1,*, Caroline Faria Bellani2, Carolina Lipparelli Morelli2, Alice Ferrand3, Nadia Benkirane-Jessel3, Rosario Elida Suman Bretas2

    Journal of Renewable Materials, Vol.7, No.3, pp. 269-277, 2019, DOI:10.32604/jrm.2019.01833

    Abstract Although nanocomposites have recently attracted special interest in the tissue engineering area, due to their potential to reinforce scaffolds for hard tissues applications, a number of variables must be set prior to any clinical application. This manuscript addresses the evaluation of thermo-mechanical properties and of cell proliferation of cellulose nanocrystals (CNC), poly(butylene adipate-co-terephthalate) (PBAT), poly(ε-caprolactone) (PCL) films and their bionanocomposites with 2 wt% of CNC obtained by casting technique. Cellulose nanocrystals extracted from Balsa wood by acid hydrolysis were used as a reinforcing phase in PBAT and PCL matrix films. The films and pure CNC… More >

  • Open Access

    ARTICLE

    Edible Coatings Based on Apple Pectin, Cellulose Nanocrystals, and Essential Oil of Lemongrass: Improving the Quality and Shelf Life of Strawberries (Fragaria Ananassa)

    Ingrid Souza Vieira da Silva1, Natália Soares Prado1, Patrícia Gontijo de Melo2, Danilo Campion Arantes3, Mara Zeni Andrade4, Harumi Otaguro1, Daniel Pasquini1,*

    Journal of Renewable Materials, Vol.7, No.1, pp. 73-87, 2019, DOI:10.32604/jrm.2019.00042

    Abstract In this work, nine different types of edible coating based on pectin, cellulose nanocrystals, glycerol, and essential oil of lemongrass were prepared and used to coat strawberries with a film formed directly on the surface of the coated fruit. The effects of the different edible coatings on refrigerated fruits in terms of weight loss, titratable acidity, total soluble solids, pH, and anthocyanin content was evaluated after 2 days, 4 days, 6 days, and 8 days of storage. Application of the edible coatings reduced the weight loss of the coated strawberries and the anthocyanin content. The More >

  • Open Access

    ARTICLE

    Surfactant-Assisted Poly(lactic acid)/Cellulose Nanocrystal Bionanocomposite for Potential Application in Paper Coating

    Ragab E. Abou-Zeid1*, Mohamed A. Diab1, Salah A. A. Mohamed2, Ahmed Salama1, Hind Abdullah Aljohani3, Kamel Rizq Shoueir4

    Journal of Renewable Materials, Vol.6, No.4, pp. 394-401, 2018, DOI:10.7569/JRM.2017.634156

    Abstract The current article addresses a new strategy for the preparation of polylactic acid/cellulose nanocrystal (PLA/CNCs) nanobiocomposite films with improved structural morphology, mechanical and barrier properties for food packaging applications. The addition of hexadecyltrimethylammonium bromide (CTAB) and sodium lauryl sulfate (SLS) as cationic and anionic surfactants respectively, was found to play a crucial role in preventing re-aggregation of the CNCs during drying and improving the dispersion of CNCs in the PLA. The coated paper was characterized using mechanical tests, water vapor permeability (WVP), X-ray diffraction (XRD), scanning electron microscopy (SEM) and air permeability. The results showed More >

  • Open Access

    ARTICLE

    Carbon Nanotube/Cellulose Nanocrystal Hybrid Conducting Thin Films

    Christophe Olivier1,2, Jean Bruno Mougel1,2, Patricia Bertoncini1, Celine Moreau2, Isabelle Capron2, Bernard Cathala2, Olivier Chauvet1*

    Journal of Renewable Materials, Vol.6, No.3, pp. 237-241, 2018, DOI:10.7569/JRM.2017.634168

    Abstract Cellulose nanocrystals (CNCs) have a high ability to disperse single-walled carbon nanotubes (SWNTs) in aqueous media and to form hybrids. These hybrids are used to grow layer-by-layer thin films of controlled thickness. Thanks to the presence of SWNTs, these films are conducting. In this article, we describe the process by which the CNC/SWNT hybrids are obtained and discuss the electrical properties of the hybrid-based layer-by-layer films. More >

  • Open Access

    ARTICLE

    Effect of Cellulose Nanocrystals on Fire, Thermal and Mechanical Behavior of N,N’-Diallylphenylphosphoricdiamide Modified Poly(lactic acid)

    Weijun Yang1†, Xiaomin Zhao2†, Elena Fortunati1, Franco Dominici1, Jose M. Kenny1, Debora Puglia1*, De-Yi Wang2*

    Journal of Renewable Materials, Vol.5, No.5, pp. 423-434, 2017, DOI:10.7569/JRM.2017.634146

    Abstract Presented herein is a deep investigation of the fire, mechanical and thermal performances of poly(lactic acid) (PLA)-based nanocomposites, which were obtained by combining cellulose nanocrystals (CNC) with various contents of N,N’-diallyl-phenylphosphoricdiamide (P-AA) via a two-steps masterbatch melt extrusion process (glycidyl methacrylate grafting on PLA and CNC premixing with PLA). Results have shown that the value of the limiting oxygen index (LOI) increased to 28.8% and a V-0 rating in UL94 test was obtained when 2 wt% of P-AA was added in the presence of cellulose nanocrystals (3 wt%). The incorporation of CNC induced a decrease More >

  • Open Access

    ARTICLE

    PLA Nanocomposites Reinforced with Cellulose Nanocrystals from Posidonia oceanica and ZnO Nanoparticles for Packaging Application

    F. Luzi1, E. Fortunati1*, A. Jiménez2, D. Puglia1, A. Chiralt2, L. Torre1

    Journal of Renewable Materials, Vol.5, No.2, pp. 103-115, 2017, DOI:10.7569/JRM.2016.634135

    Abstract Poly(lactic acid) (PLA) based nanocomposites reinforced with 1 wt% of surfactant-modified cellulose nanocrystals (s-CNC) extracted from Posidonia oceanica plant waste and zinc oxide nanoparticles (ZnO NPs) at different concentrations (0.1 and 0.5 wt%) were prepared by solvent casting process. Their thermal, morphological, optical, mechanical and water vapor permeability properties were investigated. Tensile testing showed increased values for strength and deformation at break in PLA based formulations reinforced with s-CNC and ZnO NPs as a consequence of better nanofiller dispersion compared to binary films reinforced only with ZnO NPs. Moreover, the effect of s-CNC and ZnO More >

  • Open Access

    ARTICLE

    Formation of Highly Oriented Cellulose Nanocrystal Films by Spin Coating Film from Aqueous Suspensions

    Mingzhe Jiang1, S. Nicole DeMass1, D. Ross Economy2, Thomas Shackleton1, Christopher L. Kitchens1*

    Journal of Renewable Materials, Vol.4, No.5, pp. 377-387, 2016, DOI:10.7569/JRM.2016.634131

    Abstract Spin coating was used to cast a uniform film of cellulose nanocrystals with low surface roughness and variable thickness as a function of operational parameters that include rotational speed and dispense suspension concentration. The film thickness was controllable from 40 nm up to 1 μm with surface roughness an order of magnitude less than blade-coating methods. The degree of radial orientation was qualitatively assessed and shown to be variable with processing parameters. Under specific processing conditions, the formation of striation patterns was observed and associated with film drying instability. The striation patterns are periodic in… More >

  • Open Access

    ARTICLE

    Cellulose Nanocrystals versus Polyethylene Glycol as Toughening Agents for Poly(Lactic Acid)-Poly(Acrylic Acid) Graft Copolymer

    Jose Luis Orellana, Michael Mauhar, Christopher L. Kitchens*

    Journal of Renewable Materials, Vol.4, No.5, pp. 340-350, 2016, DOI:10.7569/JRM.2016.634126

    Abstract Polylactic acid (PLA) is one of the most widely used biodegradable polymers due to the ability to synthesize it economically at industrial scale and its favorable properties for many consumer products. However, the rigid nature of PLA is not desirable for specific applications, requiring the incorporation of effective bioderived additives in order to enhance the PLA toughness and broaden applications. In this work, PLA was modified by graft polymerization of polyacrylic acid (PLA-g-PAA) to increase the hydrophilicity to promote compatibilization of cellulose nanocrystals (CNCs) or high molecular polyethylene glycol (PEG). CNCs were found to act More >

  • Open Access

    ARTICLE

    Nanocellulose in Spun Continuous Fibers: A Review and Future Outlook

    Craig Clemons

    Journal of Renewable Materials, Vol.4, No.5, pp. 327-339, 2016, DOI:10.7569/JRM.2016.634112

    Abstract Continuous fibers are commonly manufactured for a wide variety of uses such as filters, textiles, and composites. For example, most fibrous reinforcements (e.g., carbon fiber, glass fiber) for advanced composites are continuous fibers or yarns, fabrics, and preforms made from them. This allows broad flexibility in design and manufacturing approaches by controlling fiber orientation and architecture. However, there has been growing interest in preparing continuous fibers from biobased materials such as plants. Of particular recent interest are nanocelluloses, which are projected to be less expensive than many other nanomaterials and have the potential to be… More >

  • Open Access

    REVIEW

    Opportunities for Cellulose Nanomaterials in Packaging Films: A Review and Future Trends

    Nicole M. Stark

    Journal of Renewable Materials, Vol.4, No.5, pp. 313-326, 2016, DOI:10.7569/JRM.2016.634115

    Abstract Performance requirements for packaging films may include barrier properties, transparency, flexibility, and tensile strength. Conventional packaging materials, such as plastic films and laminates, are typically made from petroleum-based polymers. Currently, there is a drive to develop sustainable packaging materials. These alternative materials must be able to be manufactured economically and on a commercial scale, exhibit barrier properties and transparency, and provide adequate mechanical performance. As a biobased, renewable material, cellulose nanomaterials (CNs) are ideally suited to be used in sustainable packaging applications. CNs include cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) and each can provide More >

Displaying 11-20 on page 2 of 24. Per Page