Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (261)
  • Open Access

    ARTICLE

    Identification and Characterization of a Novel Yellow Leaf Mutant yl1 in Rice

    Xiaofang Zeng1,#, Guangzheng Li1,#, Nu’an Liu2, Yan Li1, Jianrong Li1, Xiaozhen Huang1, Degang Zhao1,2,,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.11, pp. 2419-2437, 2022, DOI:10.32604/phyton.2022.021199 - 12 July 2022

    Abstract Leaf-color mutants play an important role in the study of chlorophyll metabolism, chloroplast development, and photosynthesis system. In this study, the yellow leaf 1 (yl1) rice mutant was identified from the ethyl methane sulfonate-treated mutant progeny of Lailong, a glutinous japonica rice landrace cultivated in Guizhou Province, China. Results showed that yl1 exhibited yellow leaves with decreased chlorophyll content throughout the growth period. Chloroplast development in the yl1 mutant was disrupted, and the grana lamellae was loosely packed and disordered. RNA sequencing and real-time quantitative polymerase chain reaction (qRT-PCR) analysis revealed that the chlorophyll synthesis-related genes OsCHLH, OsCHLM, OsCHLG, PORB,… More >

  • Open Access

    ARTICLE

    Utilization of Bitter Orange Seed as a Novel Pectin Source: Compositional and Rheological Characterization

    Diako Khodaei1, Mohammad Nejatian2,*, Hassan Ahmadi Gavlighi2, Farhad Garavand3,*, Ilaria Cacciotti4

    Journal of Renewable Materials, Vol.10, No.11, pp. 2805-2817, 2022, DOI:10.32604/jrm.2022.021752 - 29 June 2022

    Abstract The seeds from bitter orange, the by-product of juice making units, hold the potential to facilitate novel, easy yet high-quality pectin extraction. To test this hypothesis, orange seed pectin (OSP) was extracted by distilled water and its compositional parameters and rheological behavior were then evaluated. Results showed that galacturonic acid was the major component of OSP (∼425 mg/g) confirming the purity of the extracted pectin, followed by glucose and some minor neutral sugars. The Mw (weight-average molar mass), Rn (number average molar mass), and Rz (z-average molar mass) values for the OSP were 4511.8 kDa,… More > Graphic Abstract

    Utilization of Bitter Orange Seed as a Novel Pectin Source: Compositional and Rheological Characterization

  • Open Access

    ARTICLE

    Synthesis and Characterization of a Novel Bamboo Shaving Geopolymer Composite

    Jiayu Zhang, Zhenyang Li, Xinli Zhang*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2871-2881, 2022, DOI:10.32604/jrm.2022.019373 - 29 June 2022

    Abstract Geopolymers are inorganic aluminosilicate materials, which have been a great research interest as a material for sustainable development. However, they possess relatively low toughness properties similar to brittle solids. The limitation may be altered by fiber reinforcement to improve their strength and toughness. This research describes the synthesis of bamboo shaving (BS) reinforced geopolymer composites and the characterization of their mechanical properties. The effect of BS content (0–2 wt. %) on the physical and mechanical properties and microstructure of metakaolin based geopolymer paste were investigated. The workability, setting time, bulk density, apparent porosity, thermal conductivity,… More >

  • Open Access

    ARTICLE

    Characterization of the Omni-Processor Sewage Sludge Ash for Reuse as Construction Material

    Prince Momar Gueye1,2,*, Siham Kamali-Bernard2, Dame Keinde1, Fabrice Bernard2, Vincent Sambou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1581-1593, 2022, DOI:10.32604/fdmp.2022.022165 - 27 June 2022

    Abstract Omni Processors (OP) are machines which use sludge as a fuel to generate electricity and clean water, but create ash at the same time. In the present study, fly ash and bottom ash are investigated as materials for potential reuse in the construction field. First, the granular size, density and Blaine finesse are determined. Then, the chemical composition and microstructure are obtained by means of X-ray fluorescence and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), respectively. Finally, ashes reactivity is determined by two chemical methods (modified Chapelle test, bound water content R3) and a mechanical method More >

  • Open Access

    ARTICLE

    Thermomechanical Characterization of a Bio-Sourced Material Based on Clay and Alfa Fibers

    Sara Ibn-Elhaj1,*, Yassine Elhamdouni1, Soumia Mounir1,2, Abdelhamid Khabbazi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1853-1863, 2022, DOI:10.32604/fdmp.2022.022531 - 27 June 2022

    Abstract Bio-based materials are of great interest owing to their abundance and the immense potential they display as an ideal alternative to widely used industrial construction materials (that directly and indirectly harm the environment). In this scope, an in-depth experimental study is presented here on clay-based materials aimed to enhance their properties through the addition of other bio-based components such as fibers, in the present case alfa fiber. The thermal conductivity and mechanical properties (compressive and flexural tensile strengths) of the composite clay-alfa material are analyzed with the percentage of alfa fiber in the matrix ranging More >

  • Open Access

    ARTICLE

    Characterization of Mechanical Properties of Waste Slurry Modified by Recycled Sand and Cement

    Beifeng Lv, Na Li*, Haibo Kang, Yanting Wu, Ben Li, Wei Wang

    Journal of Renewable Materials, Vol.10, No.10, pp. 2669-2683, 2022, DOI:10.32604/jrm.2022.019418 - 08 June 2022

    Abstract In order to study the modification effect of recycled sand on cement reinforced waste slurry (CWS), triaxial test, scanning electron microscope test and X-ray diffraction test were carried out. The mechanical test of recycled sand and cement reinforced waste slurry (RCWS) shows that the deviatoric stress–strain curve of RCWS samples changes from hardening type to softening type with the increase of recycled sand content; the peak stress increases with the increase of recycled sand content; recycled sand can enhance the shear strength of CWS by increasing both cohesion and internal friction angle. The microscopic test More >

  • Open Access

    ARTICLE

    Cellulose Fibre from Schinus molle and Its Characterization

    Abir Razzak1,2, Faten Mannai1, Ramzi Khiari3,4,5, Younes Moussaoui2,6, Mohamed N. Belgacem5,*

    Journal of Renewable Materials, Vol.10, No.10, pp. 2593-2606, 2022, DOI:10.32604/jrm.2022.021706 - 08 June 2022

    Abstract The exploitation of biomass represents a major environmental challenge related to the protection of the environment and the progressive exhaust of fossil resources. In this perspective, the main objective of this work is the extraction and the characterization of natural lignocellulosic fibers from the Schinus molle. The cellulose fibre extraction was investigated employing conditions of alkali treatment. After the alkaline steps, a bleaching treatment was done and let to a yield about 45% pure cellulose. The identification of the chemical composition of Schinus molle reveals that this raw material contains a high level of biopolymers with a More >

  • Open Access

    ARTICLE

    Characterization of Nanocomposite Membrane Based Bacterial Cellulose Made of Pineapple Waste Reinforced by Graphite Nanoplatelets

    Heru Suryanto1,2,*, Bili Darnanto Susilo3, Jibril Maulana3, Aminnudin3, Uun Yanuhar4, Surjani Wonorahardjo2,5, Husni Wahyu Wijaya2,5, Abu Saad Ansari6

    Journal of Renewable Materials, Vol.10, No.9, pp. 2455-2465, 2022, DOI:10.32604/jrm.2022.020478 - 30 May 2022

    Abstract Waste is the main problem for the environment. Handling waste for various useful applications has a benefit for the future. This work has been studied for handling pineapple peel waste to make composite film bacterial cellulose nanocomposite membrane (BCNM) with addition graphite nanoplatelet (GNP). The concentration of GNP in the membrane influence the membrane properties. The bacterial cellulose (BC) pellicle was synthesized by using media from pineapple peel waste extract. BC pellicle is cleaned with water and NaOH solution to be free from impactors. BCNM is synthesized through the mechanical disintegration stage. The results of… More > Graphic Abstract

    Characterization of Nanocomposite Membrane Based Bacterial Cellulose Made of Pineapple Waste Reinforced by Graphite Nanoplatelets

  • Open Access

    ARTICLE

    Synthesis, Characterization and Remedial Action of Biogenic Silver Nanoparticles and Chitosan-Silver Nanoparticles against Bacterial Pathogens

    Piyush Kumar Gupta1, D. Karthik Kumar2, M. Thaveena3, Soumya Pandit1, Somya Sinha4, R. Ranjithkumar2,* , Walaa F. Alsanie5, Vijay Kumar Thakur6,7,8,*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3093-3105, 2022, DOI:10.32604/jrm.2022.019335 - 30 May 2022

    Abstract Custard apple is a dry land fruit. Its leaves exhibit different pharmacological activities. In the present study, both silver (Ag) nanoparticles and chitosan-coated Ag (Chi-Ag) nanoparticles were fabricated using the aqueous leaf extract of the custard apple plant. During preliminary phytochemical analysis, various types of phytocompounds were found in the aqueous leaf extract of the same plant. Next, both nanoparticles were physiochemically characterized. FTIR analysis exhibited the fingerprint vibrational peaks of active bioactive compounds in plant extract, Ag nanoparticles, and Chi-Ag nanoparticles. UV/Visible spectral analysis revealed the highest absorbance peak at 419 nm, indicating the More > Graphic Abstract

    Synthesis, Characterization and Remedial Action of Biogenic Silver Nanoparticles and Chitosan-Silver Nanoparticles against Bacterial Pathogens

  • Open Access

    ARTICLE

    Glycated Hemoglobin HbA1c: Permittivity Experimental Applications with Some Mathematical Concepts, Temperature and Frequency Variations

    Soliman Abdalla1,2,*, Sherif Kandil2, Waleed El-Shirbeeny1, Fatma Bahabri1,3

    Journal of Renewable Materials, Vol.10, No.9, pp. 2335-2354, 2022, DOI:10.32604/jrm.2022.021211 - 30 May 2022

    Abstract Diabetes disorder turns smoothly to be a global epidemic disorder and the glycated hemoglobin (HbA1c) starts to be an efficient marker of it. The dielectric spectroscopy on different human normal- and diabetic-blood samples is used to characterize and to estimate the HbA1c concentration. “dc-” and ac-measurement of the complex conductivity in the temperature range from 280 K up to 320 K, and in the frequency range from one Hz up to 32 MHz have been performed. The thermal activation energy, ΔEσ, of dc-electric conductivity lies in the range 95 meV < ΔEσ < 115 meV; while… More >

Displaying 81-90 on page 9 of 261. Per Page