Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,134)
  • Open Access

    ARTICLE

    Application of Image Compression to Multiple-Shot Pictures Using Similarity Norms With Three Level Blurring

    Mohammed Omari1,*, Souleymane Ouled Jaafri1

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 753-775, 2019, DOI:10.32604/cmc.2019.06576

    Abstract Image compression is a process based on reducing the redundancy of the image to be stored or transmitted in an efficient form. In this work, a new idea is proposed, where we take advantage of the redundancy that appears in a group of images to be all compressed together, instead of compressing each image by itself. In our proposed technique, a classification process is applied, where the set of the input images are classified into groups based on existing technique like L1 and L2 norms, color histograms. All images that belong to the same group are More >

  • Open Access

    ARTICLE

    A Learning Based Brain Tumor Detection System

    Sultan Noman Qasem1,2, Amar Nazar3, Attia Qamar4, Shahaboddin Shamshirband5,6,*, Ahmad Karim4

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 713-727, 2019, DOI:10.32604/cmc.2019.05617

    Abstract Brain tumor is one of the most dangerous disease that causes due to uncontrollable and abnormal cell partition. In this paper, we have used MRI brain scan in comparison with CT brain scan as it is less harmful to detect brain tumor. We considered watershed segmentation technique for brain tumor detection. The proposed methodology is divided as follows: pre-processing, computing foreground applying watershed, extract and supply features to machine learning algorithms. Consequently, this study is tested on big data set of images and we achieved acceptable accuracy from K-NN classification algorithm in detection of brain More >

  • Open Access

    ARTICLE

    A Multi-Feature Weighting Based K-Means Algorithm for MOOC Learner Classification

    Yuqing Yang1,2, Dequn Zhou1,*, Xiaojiang Yang1,3,4

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 625-633, 2019, DOI:10.32604/cmc.2019.05246

    Abstract Massive open online courses (MOOC) have recently gained worldwide attention in the field of education. The manner of MOOC provides a new option for learning various kinds of knowledge. A mass of data miming algorithms have been proposed to analyze the learner’s characteristics and classify the learners into different groups. However, most current algorithms mainly focus on the final grade of the learners, which may result in an improper classification. To overcome the shortages of the existing algorithms, a novel multi-feature weighting based K-means (MFWK-means) algorithm is proposed in this paper. Correlations between the widely More >

  • Open Access

    ARTICLE

    Reversible Data Hiding in Encrypted Image Based on Block Classification Permutation

    Qun Mo1, Heng Yao1, Fang Cao2, Zheng Chang3, Chuan Qin1,*

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 119-133, 2019, DOI:10.32604/cmc.2019.05770

    Abstract Recently, reversible data hiding in encrypted image (RDHEI) has attracted extensive attention, which can be used in secure cloud computing and privacy protection effectively. In this paper, a novel RDHEI scheme based on block classification and permutation is proposed. Content owner first divides original image into non-overlapping blocks and then set a threshold to classify these blocks into smooth and non-smooth blocks respectively. After block classification, content owner utilizes a specific encryption method, including stream cipher encryption and block permutation to protect image content securely. For the encrypted image, data hider embeds additional secret information… More >

  • Open Access

    ARTICLE

    Improved Logistic Regression Algorithm Based on Kernel Density Estimation for Multi-Classification with Non-Equilibrium Samples

    Yang Yu1, Zeyu Xiong1,*, Yueshan Xiong1, Weizi Li2

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 103-118, 2019, DOI:10.32604/cmc.2019.05154

    Abstract Logistic regression is often used to solve linear binary classification problems such as machine vision, speech recognition, and handwriting recognition. However, it usually fails to solve certain nonlinear multi-classification problem, such as problem with non-equilibrium samples. Many scholars have proposed some methods, such as neural network, least square support vector machine, AdaBoost meta-algorithm, etc. These methods essentially belong to machine learning categories. In this work, based on the probability theory and statistical principle, we propose an improved logistic regression algorithm based on kernel density estimation for solving nonlinear multi-classification. We have compared our approach with More >

  • Open Access

    ARTICLE

    Tibetan Sentiment Classification Method Based on Semi-Supervised Recursive Autoencoders

    Xiaodong Yan1,2, Wei Song1,2,*, Xiaobing Zhao1,2, Anti Wang3

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 707-719, 2019, DOI:10.32604/cmc.2019.05157

    Abstract We apply the semi-supervised recursive autoencoders (RAE) model for the sentiment classification task of Tibetan short text, and we obtain a better classification effect. The input of the semi-supervised RAE model is the word vector. We crawled a large amount of Tibetan text from the Internet, got Tibetan word vectors by using Word2vec, and verified its validity through simple experiments. The values of parameter α and word vector dimension are important to the model effect. The experiment results indicate that when α is 0.3 and the word vector dimension is 60, the model works best. More >

  • Open Access

    ARTICLE

    An Automated Player Detection and Tracking in Basketball Game

    P. K. Santhosh1,*, B. Kaarthick2

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 625-639, 2019, DOI:10.32604/cmc.2019.05161

    Abstract Vision-based player recognition is critical in sports applications. Accuracy, efficiency, and Low memory utilization is alluring for ongoing errands, for example, astute communicates and occasion classification. We developed an algorithm that tracks the movements of different players from a video of a basketball game. With their position tracked, we then proceed to map the position of these players onto an image of a basketball court. The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations, so that they can better design mechanisms of defence and attack. Overall,… More >

  • Open Access

    ARTICLE

    Cross-Lingual Non-Ferrous Metals Related News Recognition Method Based on CNN with A Limited Bi-Lingual Dictionary

    Xudong Hong1, Xiao Zheng1,*, Jinyuan Xia1, Linna Wei1, Wei Xue1

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 379-389, 2019, DOI:10.32604/cmc.2019.04059

    Abstract To acquire non-ferrous metals related news from different countries’ internet, we proposed a cross-lingual non-ferrous metals related news recognition method based on CNN with a limited bilingual dictionary. Firstly, considering the lack of related language resources of non-ferrous metals, we use a limited bilingual dictionary and CCA to learn cross-lingual word vector and to represent news in different languages uniformly. Then, to improve the effect of recognition, we use a variant of the CNN to learn recognition features and construct the recognition model. The experimental results show that our proposed method acquires better results. More >

  • Open Access

    ARTICLE

    Improving Support Vector Domain Description by Maximizing the Distance Between Negative Examples and The Minimal Sphere Center's

    Mohamed EL Boujnouni1, Mohamed Jedra2

    Computer Systems Science and Engineering, Vol.33, No.6, pp. 409-420, 2018, DOI:10.32604/csse.2018.33.409

    Abstract Support Vector Domain Description (SVDD) is an effective kernel-based method used for data description. It was motivated by the success of Support Vector Machine (SVM) and thus has inherited many of its attractive properties. It has been extensively used for novelty detection and has been applied successfully to a variety of classification problems. This classifier aims to find a sphere with minimal volume including the majority of examples that belong to the class of interest (positive) and excluding the most of examples that are either outliers or belong to other classes (negatives). In this paper More >

  • Open Access

    ARTICLE

    Research on the Clustering Analysis and Similarity in Factor Space

    Sha-Sha Li1,2,∗, Tie-Jun Cui1,2,3,†, Jian Liu1,2,‡

    Computer Systems Science and Engineering, Vol.33, No.5, pp. 397-404, 2018, DOI:10.32604/csse.2018.33.397

    Abstract In this paper, we study the in uence of multiple domain attributes on the clustering analysis of object based on factor space. The representation method of graphical domain attribute is proposed for the object, which is called attribute circle. An attribute circle can represent infinite domain attributes. The similarity analysis of objects is first based on the concept of attribute circle, and the definition of graphical similarity is transformed into the definition of numerical similarity, and then the clustering analysis method of object set is studied and improved. Considering three kinds of graphical overlap, the… More >

Displaying 1101-1110 on page 111 of 1134. Per Page