Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,166)
  • Open Access

    ARTICLE

    An Image Classification Method Based on Deep Neural Network with Energy Model

    Yang Yang1,*, Jinbao Duan1, Haitao Yu1, Zhipeng Gao1, Xuesong Qiu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 555-575, 2018, DOI:10.31614/cmes.2018.04249

    Abstract The development of deep learning has revolutionized image recognition technology. How to design faster and more accurate image classification algorithms has become our research interests. In this paper, we propose a new algorithm called stochastic depth networks with deep energy model (SADIE), and the model improves stochastic depth neural network with deep energy model to provide attributes of images and analysis their characteristics. First, the Bernoulli distribution probability is used to select the current layer of the neural network to prevent gradient dispersion during training. Then in the backpropagation process, the energy function is designed More >

  • Open Access

    ARTICLE

    Weighted Sparse Image Classification Based on Low Rank Representation

    Qidi Wu1, Yibing Li1, Yun Lin1,*, Ruolin Zhou2

    CMC-Computers, Materials & Continua, Vol.56, No.1, pp. 91-105, 2018, DOI:10.3970/cmc.2018.02771

    Abstract The conventional sparse representation-based image classification usually codes the samples independently, which will ignore the correlation information existed in the data. Hence, if we can explore the correlation information hidden in the data, the classification result will be improved significantly. To this end, in this paper, a novel weighted supervised spare coding method is proposed to address the image classification problem. The proposed method firstly explores the structural information sufficiently hidden in the data based on the low rank representation. And then, it introduced the extracted structural information to a novel weighted sparse representation model More >

  • Open Access

    ARTICLE

    Multi-task Joint Sparse Representation Classification Based on Fisher Discrimination Dictionary Learning

    Rui Wang1, Miaomiao Shen1,*, Yanping Li1, Samuel Gomes2

    CMC-Computers, Materials & Continua, Vol.57, No.1, pp. 25-48, 2018, DOI:10.32604/cmc.2018.02408

    Abstract Recently, sparse representation classification (SRC) and fisher discrimination dictionary learning (FDDL) methods have emerged as important methods for vehicle classification. In this paper, inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection, we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors. To improve the classification accuracy in complex scenes, we develop a new method, called multi-task joint sparse representation classification based on More >

  • Open Access

    ARTICLE

    An Empirical Comparison on Multi-Target Regression Learning

    Xuefeng Xi1, Victor S. Sheng1,2,*, Binqi Sun2, Lei Wang1, Fuyuan Hu1

    CMC-Computers, Materials & Continua, Vol.56, No.2, pp. 185-198, 2018, DOI:10.3970/cmc.2018.03694

    Abstract Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables. It has received relatively small attention from the Machine Learning community. However, multi-target regression exists in many real-world applications. In this paper we conduct extensive experiments to investigate the performance of three representative multi-target regression learning algorithms (i.e. Multi-Target Stacking (MTS), Random Linear Target Combination (RLTC), and Multi-Objective Random Forest (MORF)), comparing the baseline single-target learning. Our experimental results show that all three multi-target regression learning algorithms do improve the performance of the single-target More >

  • Open Access

    ARTICLE

    Reversible Data Hiding in Classification-Scrambling Encrypted-Image Based on Iterative Recovery

    Yuyu Chen1, Bangxu Yin2, Hongjie He2, Shu Yan2, Fan Chen2,*, Hengming Tai3

    CMC-Computers, Materials & Continua, Vol.56, No.2, pp. 299-312, 2018, DOI:10.3970/cmc.2018.03179

    Abstract To improve the security and quality of decrypted images, this work proposes a reversible data hiding in encrypted image based on iterative recovery. The encrypted image is firstly generated by the pixel classification scrambling and bit-wise exclusive-OR (XOR), which improves the security of encrypted images. And then, a pixel-type-mark generation method based on block-compression is designed to reduce the extra burden of key management and transfer. At last, an iterative recovery strategy is proposed to optimize the marked decrypted image, which allows the original image to be obtained only using the encryption key. The proposed More >

  • Open Access

    ARTICLE

    Sentiment Classification Based on Piecewise Pooling Convolutional Neural Network

    Yuhong Zhang1,*, Qinqin Wang1, Yuling Li1, Xindong Wu2

    CMC-Computers, Materials & Continua, Vol.56, No.2, pp. 285-297, 2018, DOI:10.3970/cmc.2018.02604

    Abstract Recently, the effectiveness of neural networks, especially convolutional neural networks, has been validated in the field of natural language processing, in which, sentiment classification for online reviews is an important and challenging task. Existing convolutional neural networks extract important features of sentences without local features or the feature sequence. Thus, these models do not perform well, especially for transition sentences. To this end, we propose a Piecewise Pooling Convolutional Neural Network (PPCNN) for sentiment classification. Firstly, with a sentence presented by word vectors, convolution operation is introduced to obtain the convolution feature map vectors. Secondly, More >

  • Open Access

    ARTICLE

    Feature Selection Method Based on Class Discriminative Degree for Intelligent Medical Diagnosis

    Shengqun Fang1, Zhiping Cai1,*, Wencheng Sun1, Anfeng Liu2, Fang Liu3, Zhiyao Liang4, Guoyan Wang5

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 419-433, 2018, DOI:10.3970/cmc.2018.02289

    Abstract By using efficient and timely medical diagnostic decision making, clinicians can positively impact the quality and cost of medical care. However, the high similarity of clinical manifestations between diseases and the limitation of clinicians’ knowledge both bring much difficulty to decision making in diagnosis. Therefore, building a decision support system that can assist medical staff in diagnosing and treating diseases has lately received growing attentions in the medical domain. In this paper, we employ a multi-label classification framework to classify the Chinese electronic medical records to establish corresponding relation between the medical records and disease… More >

  • Open Access

    ARTICLE

    Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification

    Ya Tu1, Yun Lin1, Jin Wang2,3,*, Jeong-Uk Kim4

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 243-254, 2018, DOI:10.3970/cmc.2018.01755

    Abstract Deep Learning (DL) is such a powerful tool that we have seen tremendous success in areas such as Computer Vision, Speech Recognition, and Natural Language Pro-cessing. Since Automated Modulation Classification (AMC) is an important part in Cognitive Radio Networks, we try to explore its potential in solving signal modula-tion recognition problem. It cannot be overlooked that DL model is a complex mod-el, thus making them prone to over-fitting. DL model requires many training data to combat with over-fitting, but adding high quality labels to training data manually is not always cheap and accessible, especially in More >

  • Open Access

    ARTICLE

    Interobserver variability in the classification of congenital coronary abnormalities: A substudy of the anomalous connections of the coronary arteries registry

    Athanasios Koutsoukis1, Xavier Halna du Fretay2, Patrick Dupouy3, Phalla Ou4, Jean-Pierre Laissy4, Jean-Michel Juliard5, Fabien Hyafil6, Pierre Aubry5

    Congenital Heart Disease, Vol.12, No.6, pp. 726-732, 2017, DOI:10.1111/chd.12504

    Abstract Objective: The diagnosis of anomalous connections of the coronary arteries (ANOCOR) requires an appropriate identification for the management of the patients involved. We studied the observer variability in the description and classification of ANOCOR between a nonexpert group of physicians and a group of expert physicians, using the ANOCOR cohort.
    Patients and design: Consecutive patients identified by 71 referring cardiologists were included in the ANOCOR cohort. Anomalous connection was diagnosed by invasive and/or computed tomography coronary angiography. Angiographic images were reviewed by an angiographic committee with experience in this field. Both investigators and angiographic committee filled out… More >

  • Open Access

    ARTICLE

    Brake Fault Diagnosis Through Machine Learning Approaches – A Review

    Alamelu Manghai T.M.1, Jegadeeshwaran R2, Sugumaran V.3

    Structural Durability & Health Monitoring, Vol.11, No.1, pp. 43-67, 2017, DOI:10.3970/sdhm.2017.012.043

    Abstract Diagnosis is the recognition of the nature and cause of a certain phenomenon. It is generally used to determine cause and effect of a problem. Machine fault diagnosis is a field of finding faults arising in machines. To identify the most probable faults leading to failure, many methods are used for data collection, including vibration monitoring, thermal imaging, oil particle analysis, etc. Then these data are processed using methods like spectral analysis, wavelet analysis, wavelet transform, short-term Fourier transform, high-resolution spectral analysis, waveform analysis, etc., The results of this analysis are used in a root More >

Displaying 1151-1160 on page 116 of 1166. Per Page